We prove that the obstruction to the integral Hodge Question factors through the completion of the Grothendieck ring of varieties for the dimension filtration. As an application, combining work of Peyre, Colliot-Thélène and Voisin, we give the first example of a finite group such that the motivic class of its classifying stack in Ekedahl’s Grothendieck ring of stacks over is non-trivial and has trivial unramified Brauer group.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2021__359_3_305_0, author = {Scavia, Federico}, title = {Motivic classes and the integral {Hodge} {Question}}, journal = {Comptes Rendus. Math\'ematique}, pages = {305--311}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {3}, year = {2021}, doi = {10.5802/crmath.178}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.178/} }
TY - JOUR AU - Scavia, Federico TI - Motivic classes and the integral Hodge Question JO - Comptes Rendus. Mathématique PY - 2021 SP - 305 EP - 311 VL - 359 IS - 3 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.178/ DO - 10.5802/crmath.178 LA - en ID - CRMATH_2021__359_3_305_0 ER -
Scavia, Federico. Motivic classes and the integral Hodge Question. Comptes Rendus. Mathématique, Tome 359 (2021) no. 3, pp. 305-311. doi : 10.5802/crmath.178. http://www.numdam.org/articles/10.5802/crmath.178/
[1] Analytic cycles on complex manifolds, Topology, Volume 1 (1962), pp. 25-45 | DOI | MR | Zbl
[2] The universal Euler characteristic for varieties of characteristic zero, Compos. Math., Volume 140 (2004) no. 4, pp. 1011-1032 | DOI | MR | Zbl
[3] Un théorème de finitude pour le groupe de Chow des zéro-cycles d’un groupe algébrique linéaire sur un corps -adique, Invent. Math., Volume 159 (2005) no. 3, pp. 589-606 | DOI | Zbl
[4] Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J., Volume 161 (2012) no. 5, pp. 735-801 | DOI | Zbl
[5] A geometric invariant of a finite group (2009) (https://arxiv.org/abs/0903.3148)
[6] The Grothendieck group of algebraic stacks (2009) (https://arxiv.org/abs/0903.3143)
[7] The Ekedahl invariants for finite groups, J. Pure Appl. Algebra, Volume 220 (2016) no. 4, pp. 1294-1309 | DOI | MR | Zbl
[8] Invariants of algebraic groups and retract rationality of classifying spaces, Algebraic Groups: Structure and Actions (Proceedings of Symposia in Pure Mathematics), Volume 94, American Mathematical Society, 2017, pp. 277-294 | MR | Zbl
[9] Unramified cohomology of degree 3 and Noether’s problem, Invent. Math., Volume 171 (2008) no. 1, pp. 191-225 | DOI | MR | Zbl
[10] Noether’s problem over an algebraically closed field, Invent. Math., Volume 77 (1984) no. 1, pp. 71-84 | DOI | MR | Zbl
[11] The motive of a classifying space, Geom. Topol., Volume 20 (2016) no. 4, pp. 2079-2133 | DOI | MR | Zbl
[12] Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, 2007 | MR | Zbl
[13] Hodge theory and complex algebraic geometry. II, Cambridge Studies in Advanced Mathematics, 77, Cambridge University Press, 2007 | MR | Zbl
Cité par Sources :