Soit une algèbre associative. Un mot fini sur l’alphabet est -réductible si son image dans est une combinaison linéaire de mots de longueur lexicographiquement moindre. Une obstruction dans un mot minimal -réductible. Si le nombre d’obstructions est fini, alors a une base finie Gröbner, et le mot problème pour l’algèbre est décidable. Une fonction co-croissance est le nombre d’obstructions de longueur . Nous montrons que la fonction de co-croissance d’une algèbre finement présentée est soit bornée, soit au moins logarithmique. Nous montrons également qu’un mot uniformément récurrent a au moins une co-croissance logarithmique.
Let be an associative algebra. A finite word over alphabet is -reducible if its image in is a -linear combination of length-lexicographically lesser words. An obstruction is a subword-minimal -reducible word. If the number of obstructions is finite then has a finite Gröbner basis, and the word problem for the algebra is decidable. A cogrowth function is the number of obstructions of length . We show that the cogrowth function of a finitely presented algebra is either bounded or at least logarithmical. We also show that an uniformly recurrent word has at least logarithmical cogrowth.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2021__359_3_297_0, author = {Kanel-Belov, Alexei Ya. and Melnikov, Igor and Mitrofanov, Ivan}, title = {On cogrowth function of algebras and its logarithmical gap}, journal = {Comptes Rendus. Math\'ematique}, pages = {297--303}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {3}, year = {2021}, doi = {10.5802/crmath.170}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.170/} }
TY - JOUR AU - Kanel-Belov, Alexei Ya. AU - Melnikov, Igor AU - Mitrofanov, Ivan TI - On cogrowth function of algebras and its logarithmical gap JO - Comptes Rendus. Mathématique PY - 2021 SP - 297 EP - 303 VL - 359 IS - 3 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.170/ DO - 10.5802/crmath.170 LA - en ID - CRMATH_2021__359_3_297_0 ER -
%0 Journal Article %A Kanel-Belov, Alexei Ya. %A Melnikov, Igor %A Mitrofanov, Ivan %T On cogrowth function of algebras and its logarithmical gap %J Comptes Rendus. Mathématique %D 2021 %P 297-303 %V 359 %N 3 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.170/ %R 10.5802/crmath.170 %G en %F CRMATH_2021__359_3_297_0
Kanel-Belov, Alexei Ya.; Melnikov, Igor; Mitrofanov, Ivan. On cogrowth function of algebras and its logarithmical gap. Comptes Rendus. Mathématique, Tome 359 (2021) no. 3, pp. 297-303. doi : 10.5802/crmath.170. http://www.numdam.org/articles/10.5802/crmath.170/
[1] Forbidden Words in Symbolic Dynamics, Adv. Appl. Math., Volume 25 (2020) no. 2, pp. 163-193 | DOI | MR | Zbl
[2] Monomial algebras, J. Math. Sci., New York, Volume 87 (1997) no. 3, pp. 3463-3575 | DOI | MR | Zbl
[3] The diamond lemma for ring theory, Adv. Math., Volume 29 (1978) no. 2, pp. 178-218 | DOI | MR | Zbl
[4] The maximal length of the period of a periodic word defined by restrictions (2013) (https://arxiv.org/abs/1305.0460)
[5] On the number of restrictions defining a periodic sequence, Model and Analysis of Inform. Systems, Volume 14 (2007) no. 2, pp. 12-16 (in Russian)
[6] Finite Gröbner basis algebras with unsolvable nilpotency problem and zero divisors problem, J. Algebra, Volume 508 (2018), pp. 575-588 | DOI | Zbl
[7] Number of restrictions required for periodic word in the finite alphabet (2012) (https://arxiv.org/abs/1209.0220)
[8] Minimal number of restrictions defining a periodic word (2014) (https://arxiv.org/abs/1412.5201)
[9] Sequences close to periodic, Russ. Math. Surv., Volume 64 (2009) no. 5, pp. 805-871 | DOI | Zbl
Cité par Sources :