Équations aux dérivées partielles
Uniform boundedness of solutions for a predator-prey system with diffusion and chemotaxis
[Limite uniforme des solutions pour un système prédateur-proie avec diffusion et chimiotaxie]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 103-108.

Dans cette Note, nous étudions un système non linéaire d’équations différentielles partielles de type réaction-diffusion décrivant l’évolution d’un système biologique proie-prédateur avec chimiotaxie et prédateurs dormants. Nous considérons une équation ordinaire couplée à un système parabolique de chimiotaxie. Sous certaines hypothèses appropriées, nous obtenons l’existence globale en temps de solutions classiques du système considéré dans n’importe quelle dimension spatiale.

In this Note we study a nonlinear system of reaction-diffusion differential equations consisting of an ordinary differential equation coupled to a fully parabolic chemotaxis system. This system constitutes a mathematical model for the evolution of a prey-predator biological population with chemotaxis and dormant predators. Under suitable assumptions we prove the global in time existence and boundedness of classical solutions of this system in any space dimension.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.17
Dáger, René 1 ; Navarro, Víctor 2 ; Negreanu, Mihaela 2

1 Departamento de Matemática Aplicada, Universidad Politécnica de Madrid, 28040 Madrid, Spain
2 Departamento de Análisis Matemático y Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain
@article{CRMATH_2020__358_1_103_0,
     author = {D\'ager, Ren\'e and Navarro, V{\'\i}ctor and Negreanu, Mihaela},
     title = {Uniform boundedness of solutions for a predator-prey system with diffusion and chemotaxis},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {103--108},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {1},
     year = {2020},
     doi = {10.5802/crmath.17},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.17/}
}
TY  - JOUR
AU  - Dáger, René
AU  - Navarro, Víctor
AU  - Negreanu, Mihaela
TI  - Uniform boundedness of solutions for a predator-prey system with diffusion and chemotaxis
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 103
EP  - 108
VL  - 358
IS  - 1
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.17/
DO  - 10.5802/crmath.17
LA  - en
ID  - CRMATH_2020__358_1_103_0
ER  - 
%0 Journal Article
%A Dáger, René
%A Navarro, Víctor
%A Negreanu, Mihaela
%T Uniform boundedness of solutions for a predator-prey system with diffusion and chemotaxis
%J Comptes Rendus. Mathématique
%D 2020
%P 103-108
%V 358
%N 1
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.17/
%R 10.5802/crmath.17
%G en
%F CRMATH_2020__358_1_103_0
Dáger, René; Navarro, Víctor; Negreanu, Mihaela. Uniform boundedness of solutions for a predator-prey system with diffusion and chemotaxis. Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 103-108. doi : 10.5802/crmath.17. http://www.numdam.org/articles/10.5802/crmath.17/

[1] Alikakos, Nicholas D. L p bounds of solutions of reaction-diffusion equations, Commun. Partial Differ. Equations, Volume 4 (1979), pp. 827-868 | Zbl

[2] Amann, Herbert Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differ. Integral Equ., Volume 3 (1990) no. 1, pp. 13-75 | MR | Zbl

[3] Amann, Herbert Nonhomogeneous linear and quasilinear elliptic and parabollic boundary value problems, Function spaces, differential operators and nonlinear analysis (Teubner-Texte zur Mathematik), Volume 133, Teubner, 1993, pp. 9-126 | DOI | Zbl

[4] Kuwamura, Masataka Turing instabilities in prey-predator systems with dormancy of predators, J. Math. Biol., Volume 71 (2015) no. 1, pp. 125-149 | DOI | Zbl

[5] Kuwamura, Masataka; Nakazawa, Takefumi Dormancy of predators dependent on the rate of variation in prey density, SIAM J. Appl. Math., Volume 71 (2011) no. 1, pp. 169-179 | DOI | MR | Zbl

[6] Negreanu, Mihaela; Tello, J. Ignacio On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal., Volume 46 (2014) no. 6, pp. 3761-3781 | DOI | MR | Zbl

[7] Negreanu, Mihaela; Tello, J. Ignacio Global existence and asymptotic behavior of solutions to a Predator-Prey chemotaxis system with two chemicals, J. Math. Anal. Appl., Volume 474 (2019) no. 2, pp. 1116-1131 | DOI | MR | Zbl

[8] Wu, Sainan; Shi, Junping; Wu, Boying Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differ. Equations, Volume 260 (2016) no. 7, pp. 5847-5874 | MR | Zbl

[9] Wu, Sainan; Wang, Jinfeng; Shi, Junping Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci., Volume 28 (2018), pp. 2275-2312 | MR | Zbl

Cité par Sources :