Algèbre, Équations aux dérivées partielles
Characterization of the moment space corresponding to the Levermore basis
[Caractérisation de l’espace des moments correspondant à la base de Levermore]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 97-102.

Une caractérisation complète de l’espace des moments correspondant à la base de Levermore est donnée ici, à travers des contraintes sur les moments. Les conditions nécessaires sont obtenues grâce à des outils classiques, similaires aux déterminants de Hankel. Dans le cas mono-varié, il est bien connu que ces conditions sont suffisantes. Pour généraliser ce résultat à un cas multi-varié, une preuve constructive non classique est donnée ici en se ramenant à des problèmes mono-variés. Cependant, il est également montré ici, sur un exemple, que la fermeture obtenue dans le cas multi-varié n’hérite pas nécessairement des bonnes propriétés de la fermeture mono-variée.

A complete characterisation of the moment space corresponding to the Levermore basis is given here, through constraints on the moments. The necessary conditions are obtained thanks to classical tools, similar to Hankel determinants. In the mono-variate case, it is well-known that these conditions are sufficient. To generalize this result to multi-variate case, a non-classical constructive proof is given here reducing the problem to several mono-variate ones. However, it is also shown here on an example that the obtained multi-variate closure does not necessarily inherit of the good properties of the mono-variate closure.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.16
Laurent, Frédérique 1, 2

1 Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie 91190 Gif-sur-Yvette, France
2 Fédération de Mathématiques de CentraleSupélec - FR CNRS 3487, France
@article{CRMATH_2020__358_1_97_0,
     author = {Laurent, Fr\'ed\'erique},
     title = {Characterization of the moment space corresponding to the {Levermore} basis},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {97--102},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {1},
     year = {2020},
     doi = {10.5802/crmath.16},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.16/}
}
TY  - JOUR
AU  - Laurent, Frédérique
TI  - Characterization of the moment space corresponding to the Levermore basis
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 97
EP  - 102
VL  - 358
IS  - 1
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.16/
DO  - 10.5802/crmath.16
LA  - en
ID  - CRMATH_2020__358_1_97_0
ER  - 
%0 Journal Article
%A Laurent, Frédérique
%T Characterization of the moment space corresponding to the Levermore basis
%J Comptes Rendus. Mathématique
%D 2020
%P 97-102
%V 358
%N 1
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.16/
%R 10.5802/crmath.16
%G en
%F CRMATH_2020__358_1_97_0
Laurent, Frédérique. Characterization of the moment space corresponding to the Levermore basis. Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 97-102. doi : 10.5802/crmath.16. http://www.numdam.org/articles/10.5802/crmath.16/

[1] Chalons, Christophe; Fox, Rodney O.; Laurent, Frédérique; Massot, Marc; Vié, Aymeric Multivariate Gaussian extended quadrature method of moments for turbulent disperse multiphase flow, Multiscale Model. Simul., Volume 15 (2017) no. 4, pp. 1553-1583 | DOI | MR | Zbl

[2] Fox, Rodney O.; Laurent, Frédérique; Vié, Aymeric Conditional hyperbolic quadrature method of moments for kinetic equations, J. Comput. Phys., Volume 365 (2018), pp. 269-293 | MR | Zbl

[3] Lasserre, Jean Bernard Moments, positive polynomials and their applications, Imperial College Press Optimization Series, 1, Imperial College Press, 2010 | MR | Zbl

[4] Levermore, C. David Moment closure hierarchies for kinetic theories, J. Stat. Phys., Volume 83 (1996) no. 5-6, pp. 1021-1065 | DOI | MR | Zbl

[5] Marchisio, Daniele L.; Fox, Rodney O. Computational models for polydisperse particulate and multiphase systems, Cambridge Series in Chemical Engineering, Cambridge University Press, 2013 | DOI

[6] McDonald, James; Torrilhon, Manuel Affordable robust moment closures for CFD based on the maximum-entropy hierarchy, J. Comput. Phys., Volume 251 (2013), pp. 500-523 | DOI | MR | Zbl

[7] Müller, Ingo; Ruggeri, Tommaso Rational extended thermodynamics, Springer Tracts in Natural Philosophy, 37, Springer, 1998 | MR | Zbl

[8] Struchtrup, Henning Macroscopic Transport Equations for Rarefied Gas Flows, Interaction of Mechanics and Mathematics, Springer, 2005 | Zbl

Cité par Sources :