In a recent article by Gravejat and Smets [7], it is built smooth solutions to the inviscid surface quasi-geostrophic equation that have the form of a traveling wave. In this article we work back on their construction to provide similar solutions to a more general class of quasi-geostrophic equation where the half-laplacian is replaced by any fractional laplacian.
Accepté le :
Publié le :
@article{CRMATH_2021__359_1_85_0, author = {Godard-Cadillac, Ludovic}, title = {Smooth traveling-wave solutions to the inviscid surface quasi-geostrophic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {85--98}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {1}, year = {2021}, doi = {10.5802/crmath.159}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.159/} }
TY - JOUR AU - Godard-Cadillac, Ludovic TI - Smooth traveling-wave solutions to the inviscid surface quasi-geostrophic equations JO - Comptes Rendus. Mathématique PY - 2021 SP - 85 EP - 98 VL - 359 IS - 1 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.159/ DO - 10.5802/crmath.159 LA - en ID - CRMATH_2021__359_1_85_0 ER -
%0 Journal Article %A Godard-Cadillac, Ludovic %T Smooth traveling-wave solutions to the inviscid surface quasi-geostrophic equations %J Comptes Rendus. Mathématique %D 2021 %P 85-98 %V 359 %N 1 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.159/ %R 10.5802/crmath.159 %G en %F CRMATH_2021__359_1_85_0
Godard-Cadillac, Ludovic. Smooth traveling-wave solutions to the inviscid surface quasi-geostrophic equations. Comptes Rendus. Mathématique, Tome 359 (2021) no. 1, pp. 85-98. doi : 10.5802/crmath.159. http://www.numdam.org/articles/10.5802/crmath.159/
[1] Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, Springer, 1978 | MR | Zbl
[2] An extension problem related to the fractional laplacian, Commun. Partial Differ. Equations, Volume 32 (2007) no. 8, pp. 1245-1260 | DOI | MR | Zbl
[3] Global smooth solutions for the inviscid SQG equation (2016) (https://arxiv.org/abs/1603.03325) | Zbl
[4] Formation of strong fronts in the -D quasigeostrophic thermal active scalar, Nonlinearity, Volume 7 (1994) no. 6, pp. 1495-1533 | DOI | MR | Zbl
[5] Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521-573 | DOI | MR | Zbl
[6] Les vortex quasi-géostrophiques et leur désingularisation, Ph. D. Thesis, Sorbonne Université (France) (2020)
[7] Smooth travelling-wave solutions to the inviscid surface quasi-geostrophic equation, Int. Math. Res. Not., Volume 2019 (2019) no. 6, pp. 1744-1757 | DOI | MR | Zbl
[8] The principle of symmetric criticality, Commun. Math. Phys., Volume 69 (1979) no. 1, pp. 19-30 | DOI | MR | Zbl
[9] Geophysical Fluid Dynamics, Springer, 1987
[10] Partial symmetry and asymptotic behavior for some elliptic variational problems, Calc. Var. Partial Differ. Equ., Volume 18 (2003) no. 1, pp. 57-75 | DOI | MR | Zbl
[11] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993 | MR | Zbl
[12] Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press, 2006 | Zbl
Cité par Sources :