Théorie des groupes
Property FW and 1-dimensional piecewise groups
Comptes Rendus. Mathématique, Tome 359 (2021) no. 1, pp. 71-78.

Property FW is a natural combinatorial weakening of Kazhdan’s Property T. We prove that the group of piecewise homographic self-transformations of the real projective line, has “few” infinite subgroups with Property FW. In particular, no such subgroup is amenable or has Kazhdan’s Property T. These results are extracted from a longer paper. We provide a complete proof, whose main tools are the use of the notion of partial action and of one-dimensional geometric structures.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.155
Classification : 57S05, 57M50, 57M60, 20F65, 22F05, 53C10, 57S25
Cornulier, Yves 1

1 CNRS and Univ Lyon, Univ Claude Bernard Lyon 1, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, 69622 Villeurbanne, France.
@article{CRMATH_2021__359_1_71_0,
     author = {Cornulier, Yves},
     title = {Property {FW} and 1-dimensional piecewise groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {71--78},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {1},
     year = {2021},
     doi = {10.5802/crmath.155},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.155/}
}
TY  - JOUR
AU  - Cornulier, Yves
TI  - Property FW and 1-dimensional piecewise groups
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 71
EP  - 78
VL  - 359
IS  - 1
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.155/
DO  - 10.5802/crmath.155
LA  - en
ID  - CRMATH_2021__359_1_71_0
ER  - 
%0 Journal Article
%A Cornulier, Yves
%T Property FW and 1-dimensional piecewise groups
%J Comptes Rendus. Mathématique
%D 2021
%P 71-78
%V 359
%N 1
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.155/
%R 10.5802/crmath.155
%G en
%F CRMATH_2021__359_1_71_0
Cornulier, Yves. Property FW and 1-dimensional piecewise groups. Comptes Rendus. Mathématique, Tome 359 (2021) no. 1, pp. 71-78. doi : 10.5802/crmath.155. http://www.numdam.org/articles/10.5802/crmath.155/

[1] Abadie, Fernando Sobre ações parciais, fibrados de Fell e grupóides, Ph. D. Thesis, University of São Paulo, Brazil (1999)

[2] Abadie, Fernando Enveloping actions and Takai duality for partial actions, J. Funct. Anal., Volume 197 (2003) no. 1, pp. 14-67 | DOI | MR | Zbl

[3] Bekka, Bachir; de la Harpe, Pierre; Valette, Alain Kazhdan’s Property (T), New Mathematical Monographs, 11, Cambridge University Press, 2008 | MR | Zbl

[4] Betten, Dieter Die Projektivitätengruppe der Moulton–Ebenen, J. Geom., Volume 13 (1979) no. 2, pp. 197-209 | DOI | MR | Zbl

[5] Betten, Dieter; Wagner, Alan Eine stückweise projektive topologische Gruppe im Zusammenhang mit den Moulton–Ebenen, Arch. Math., Volume 38 (1982) no. 3, pp. 280-285 | DOI | Zbl

[6] Carrière, Yves; Ghys, Étienne Relations d’équivalence moyennables sur les groupes de Lie, C. R. Math. Acad. Sci. Paris, Volume 300 (1985) no. 19, pp. 677-680 | Zbl

[7] Cornulier, Yves Irreducible lattices, invariant means, and commensurating actions, Math. Z., Volume 279 (2015) no. 1-2, pp. 1-26 | DOI | MR | Zbl

[8] Cornulier, Yves Group actions with commensurated subsets, wallings and cubings (2016) (https://arxiv.org/abs/1302.5982)

[9] Cornulier, Yves Commensurating actions for groups of piecewise continuous transformations (2018) (https://arxiv.org/abs/1803.08572)

[10] Cornulier, Yves Regularization of birational actions of FW groups (2019) (https://arxiv.org/abs/1910.07802 to appear in Confluentes Mathematici)

[11] Dahmani, François; Fujiwara, Koji; Guirardel, Vincent Free groups of interval exchange transformations are rare, Groups Geom. Dyn., Volume 7 (2013) no. 4, pp. 883-910 | DOI | MR | Zbl

[12] Ershov, Mikhail; Jaikin-Zapirain, Andrei Property (T) for noncommutative universal lattices, Invent. Math., Volume 179 (2010) no. 2, pp. 303-347 | DOI | MR | Zbl

[13] Exel, Ruy Partial actions of groups and actions of inverse semigroups, Proc. Am. Math. Soc., Volume 126 (1998) no. 12, pp. 3481-3494 | DOI | MR | Zbl

[14] Faraut, Jacques; Harzallah, Khelifa Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier, Volume 24 (1974) no. 3, pp. 171-217 | DOI | Numdam | Zbl

[15] Greenberg, PETER Pseudogroups of C 1 piecewise projective homeomorphisms, Pac. J. Math., Volume 129 (1987) no. 1, pp. 67-75 | DOI | MR | Zbl

[16] Kaluba, Maluba; Kielak, Dawid; Nowak, Piotr W. On property (T) for Aut(𝔽 n ) and SL n () (2018) (https://arxiv.org/abs/1812.03456, to appear in Annals of Mathematics)

[17] Kaluba, Maluba; Nowak, Piotr W.; Ozawa, Narutaka Aut(𝔽 5 ) has property (T), Math. Ann., Volume 375 (2019) no. 3-4, pp. 1169-1191 | MR | Zbl

[18] Kellendonk, Johannes; Lawson, Mark V. Partial actions of groups, Int. J. Algebra Comput., Volume 14 (2004) no. 1, pp. 87-114 | DOI | MR | Zbl

[19] Kuiper, Nicolaas Hendrik Sur les surfaces localement affines., Géométrie différentielle (Colloques Internationaux du Centre National de la Recherche Scientifique), Volume 1953, CNRS Editions, 1953, pp. 79-87 | Zbl

[20] Kuiper, Nicolaas Hendrik Locally projective spaces of dimension one, Mich. Math. J., Volume 2 (1954), pp. 95-97 | MR | Zbl

[21] Lodha, Yash; Matte Bon, Nicoás; Triestino, Michele Property FW, differentiable structures, and smoothability of singular actions, J. Topol., Volume 13 (2020) no. 3, pp. 1119-1138 | DOI | MR | Zbl

[22] Lodha, Yash; Mooren, Justin Tatch A nonamenable finitely presented group of piecewise projective homeomorphisms, Groups Geom. Dyn., Volume 10 (2016) no. 1, pp. 177-200 | DOI | MR | Zbl

[23] Monod, Nicolas Groups of piecewise projective homeomorphisms, Proc. Natl. Acad. Sci. USA, Volume 110 (2013) no. 12, pp. 4524-4527 | DOI | MR | Zbl

[25] Neumann, Bernhard Hermann Groups covered by finitely many cosets, Publ. Math., Volume 3 (1954), pp. 227-242 | MR | Zbl

[26] Ollivier, Yann; Wise, Daniel T. Kazhdan groups with infinite outer automorphism group, Trans. Am. Math. Soc., Volume 359 (2007) no. 5, pp. 1959-1976 | DOI | MR | Zbl

[27] Palais, Richard S. A global formulation of the Lie theory of transformation groups, Memoirs of the American Mathematical Society, 22, American Mathematical Society, 1957 | MR | Zbl

[28] Poizat, Bruno A course in model theory. An introduction to contemporary mathematical logic, Universitext, Springer, 2000 (translated from the French by Moses Klein) | Zbl

[29] Robertson, Guyan Crofton formulae and geodesic distance in hyperbolic spaces, J. Lie Theory, Volume 8 (1998) no. 1, pp. 163-172 | MR | Zbl

[30] Robertson, Guyan; Steger, T. Negative definite kernels and a dynamical characterization of property (T) for countable groups, Ergodic Theory Dyn. Syst., Volume 18 (1998) no. 1, pp. 247-253 | DOI | MR | Zbl

[31] Strambach, Karl Der von Staudtsche Standpunkt in lokal kompakten Geometrien, Math. Z., Volume 155 (1977) no. 1, pp. 11-21 | DOI | MR | Zbl

[32] Żuk, Andrzej La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres, C. R. Math. Acad. Sci. Paris, Volume 323 (1996) no. 5, pp. 453-458 | MR | Zbl

Cité par Sources :