Nous étudions une quantité liée au volume sur la strate des surfaces de translation de genre , avec une singularité conique. Nous donnons une suite explicite de surfaces telles que quand n tend vers l’infini, étant l’infimum conjectural de sur .
We study a volume related quantity on the stratum of translation surfaces of genus , with one conical point. We provide an explicit sequence of surfaces such that when n goes to infinity, being the conjectured infimum for over .
Accepté le :
Publié le :
@article{CRMATH_2021__359_1_65_0, author = {Cheboui, Smail and Kessi, Arezki and Massart, Daniel}, title = {Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {65--70}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {1}, year = {2021}, doi = {10.5802/crmath.153}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.153/} }
TY - JOUR AU - Cheboui, Smail AU - Kessi, Arezki AU - Massart, Daniel TI - Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$ JO - Comptes Rendus. Mathématique PY - 2021 SP - 65 EP - 70 VL - 359 IS - 1 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.153/ DO - 10.5802/crmath.153 LA - en ID - CRMATH_2021__359_1_65_0 ER -
%0 Journal Article %A Cheboui, Smail %A Kessi, Arezki %A Massart, Daniel %T Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$ %J Comptes Rendus. Mathématique %D 2021 %P 65-70 %V 359 %N 1 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.153/ %R 10.5802/crmath.153 %G en %F CRMATH_2021__359_1_65_0
Cheboui, Smail; Kessi, Arezki; Massart, Daniel. Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$. Comptes Rendus. Mathématique, Tome 359 (2021) no. 1, pp. 65-70. doi : 10.5802/crmath.153. http://www.numdam.org/articles/10.5802/crmath.153/
[1] Algebraic intersection for translation surfaces in the Teichmüller disk of (https://arxiv.org/abs/2007.10847)
[2] Systolic geometry of translation surfaces (2018) (https://arxiv.org/abs/1809.10327v1)
[3] Prime arithmetic Teichmüller discs in , Isr. J. Math., Volume 151 (2006), pp. 281-321 | DOI | Zbl
[4] The maximum number of systoles for genus two Riemann surfaces with abelian differentials, Comment. Math. Helv., Volume 94 (2019) no. 2, pp. 399-437 | DOI | MR | Zbl
[5] On the intersection form of surfaces, Manuscr. Math., Volume 143 (2014) no. 1-2, pp. 19-49 | DOI | MR | Zbl
[6] Teichmüller curves in genus two: discriminant and spin, Math. Ann., Volume 333 (2005) no. 1, pp. 87-130 | DOI | Zbl
[7] An algorithm for finding the Veech group of an origami, Exp. Math., Volume 13 (2004) no. 4, pp. 459-472 | DOI | MR | Zbl
Cité par Sources :