[Une combinaison d’ordre 2 de méthodes vérifiant un principe du maximum pour la discrétisation d’opérateurs de diffusion]
Nous décrivons une combinaison d’ordre 2 de méthodes supprimant les oscillations apparaissant pour la discrétisation d’opérateur de diffusion avec des schémas volumes finis centrés sur les mailles.
We describe a second order in space combination of methods suppressing oscillations appearing for diffusion operator discretization with cell-centered finite volume schemes.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_1_89_0, author = {Le Potier, Christophe}, title = {A second order in space combination of methods verifying a maximum principle for the discretization of diffusion operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {89--95}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {1}, year = {2020}, doi = {10.5802/crmath.15}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.15/} }
TY - JOUR AU - Le Potier, Christophe TI - A second order in space combination of methods verifying a maximum principle for the discretization of diffusion operators JO - Comptes Rendus. Mathématique PY - 2020 SP - 89 EP - 95 VL - 358 IS - 1 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.15/ DO - 10.5802/crmath.15 LA - en ID - CRMATH_2020__358_1_89_0 ER -
%0 Journal Article %A Le Potier, Christophe %T A second order in space combination of methods verifying a maximum principle for the discretization of diffusion operators %J Comptes Rendus. Mathématique %D 2020 %P 89-95 %V 358 %N 1 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.15/ %R 10.5802/crmath.15 %G en %F CRMATH_2020__358_1_89_0
Le Potier, Christophe. A second order in space combination of methods verifying a maximum principle for the discretization of diffusion operators. Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 89-95. doi : 10.5802/crmath.15. http://www.numdam.org/articles/10.5802/crmath.15/
[1] Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods, SIAM J. Sci. Comput., Volume 19 (1998) no. 5, pp. 1700-1716 | DOI | Zbl
[2] A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 11-12, pp. 673-676 | DOI | MR | Zbl
[3] Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 17-18, pp. 1007-1012 | DOI | MR | Zbl
[4] Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities, SIAM J. Numer. Anal., Volume 46 (2008) no. 6, pp. 3032-3070 | DOI | MR | Zbl
[5] Monotone corrections for generic cell-centered Finite Volume approximations of anisotropic diffusion equations, Numer. Math., Volume 125 (2013) no. 3, pp. 387-417 | DOI | MR | Zbl
[6] Numerical analysis of a nonlinear free-energy diminishing discrete duality finite volume scheme for convection diffusion equations (2017) (https://hal.archives-ouvertes.fr/hal-01529143v1)
[7] Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations, Math. Comput., Volume 85 (2016) no. 298, pp. 549-580 | DOI | MR | Zbl
[8] Convergence Rate of a Finite Volume Scheme for a Two Dimensional Convection Diffusion Problem, M2AN, Math. Model. Numer. Anal., Volume 33 (1999) no. 3, pp. 493-516 | DOI | Numdam | MR | Zbl
[9] Non linear finite volume schemes for the heat equation in 1D, ESAIM, Math. Model. Numer. Anal., Volume 48 (2014) no. 1, pp. 107-134 | DOI | Zbl
[10] A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, ESAIM, Math. Model. Numer. Anal., Volume 39 (2005) no. 6, pp. 1203-1249 | DOI | Numdam | MR | Zbl
[11] Finite volume schemes for diffusion equations: introduction to and review of modern methods, Math. Models Methods Appl. Sci., Volume 24 (2014) no. 8, pp. 1575-1619 | DOI | MR | Zbl
[12] A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal., Volume 26 (2006) no. 2, pp. 326-353 | DOI | Zbl
[13] Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., Volume 30 (2010) no. 4, pp. 1009-1043 | DOI | MR | Zbl
[14] Benchmark on discretization schemes for anisotropic diffusion problems on general grids, Finite volumes for complex applications. V. Proceedings of the 5th International Symposium, ISTE, 2008, pp. 659-692 (http://www.latp.univ-mrs.fr/fvca5) | Zbl
[15] A nonlinear second order in space correction and maximum principle for diffusion operators, C. R. Math. Acad. Sci. Paris, Volume 352 (2014) no. 11, pp. 947-952 | MR | Zbl
[16] Construction et développement de nouveaux schémas pour des problèmes elliptiques ou paraboliques, 2017 (Habilitation à Diriger des Recherches, https://hal-cea.archives-ouvertes.fr/tel-01788736)
[17] A nonlinear correction and local minimum principle for diffusion operators with finite differences, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 1, pp. 100-106 | MR | Zbl
[18] A nonlinear correction and maximum principle for diffusion operators discretized using hybrid schemes, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 1-2, pp. 101-106 | DOI | Zbl
[19] Local flux mimetic finite difference methods, Numer. Math., Volume 112 (2009) no. 1, pp. 115-152 | DOI | MR | Zbl
Cité par Sources :