Théorie des groupes
Influence of the number of Sylow subgroups on solvability of finite groups
Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1227-1230.

Let G be a finite group. We prove that if the number of Sylow 3-subgroups of G is at most 7 and the number of Sylow 5-subgroups of G is at most 1455, then G is solvable. This is a strong form of a recent conjecture of Robati.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.146
Classification : 20D10, 20D20, 20F16, 20F19
Anabanti, Chimere Stanley 1 ; Moretó, Alexander 2 ; Zarrin, Mohammad 3

1 Institut für Analysis und Zahlentheorie, Technische Universität Graz (TU Graz), Graz 8010 Austria.
2 Departament de Matemàtiques, Universitat de València, 46100, Burjassot, València Spain.
3 Department of Mathematics, University of Kurdistan, P.O. Box: 416, Sanandaj, Iran.
@article{CRMATH_2020__358_11-12_1227_0,
     author = {Anabanti, Chimere Stanley and Moret\'o, Alexander and Zarrin, Mohammad},
     title = {Influence of the number of {Sylow} subgroups on solvability of finite groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1227--1230},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.146},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.146/}
}
TY  - JOUR
AU  - Anabanti, Chimere Stanley
AU  - Moretó, Alexander
AU  - Zarrin, Mohammad
TI  - Influence of the number of Sylow subgroups on solvability of finite groups
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1227
EP  - 1230
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.146/
DO  - 10.5802/crmath.146
LA  - en
ID  - CRMATH_2020__358_11-12_1227_0
ER  - 
%0 Journal Article
%A Anabanti, Chimere Stanley
%A Moretó, Alexander
%A Zarrin, Mohammad
%T Influence of the number of Sylow subgroups on solvability of finite groups
%J Comptes Rendus. Mathématique
%D 2020
%P 1227-1230
%V 358
%N 11-12
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.146/
%R 10.5802/crmath.146
%G en
%F CRMATH_2020__358_11-12_1227_0
Anabanti, Chimere Stanley; Moretó, Alexander; Zarrin, Mohammad. Influence of the number of Sylow subgroups on solvability of finite groups. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1227-1230. doi : 10.5802/crmath.146. http://www.numdam.org/articles/10.5802/crmath.146/

[1] Guralnick, Robert M. Subgroups of prime power index in a simple group, J. Algebra, Volume 81 (1983), pp. 312-319 | MR | Zbl

[2] Hall, Marshal jun. On the number of Sylow subgroups in a finite group, J. Algebra, Volume 73 (1967), pp. 363-371 | DOI | MR | Zbl

[3] Kurzweil, Hans; Stellmacher, Bernd The Theory of Finite Groups: An Introduction, Universitext, Springer, 2004 | Zbl

[4] Liebler, Robert A.; Yellen, Jay E. In search of non-solvable groups of central type, Pac. J. Math., Volume 82 (1979) no. 2, pp. 485-492 | DOI | Zbl

[5] Robati, Sajjad Mahmood A solvability criterion for finite goups related to the number of Sylow subgroups, Commun. Algebra, Volume 48 (2020) no. 12, pp. 5176-5180 | DOI | MR | Zbl

[6] Suzuki, Michio On a class of doubly transitive groups, Ann. Math., Volume 75 (1962), pp. 105-145 | DOI | MR | Zbl

[7] The GAP Group GAP – Groups, Algorithms, and Programming, 2019 (Version 4.10.2, https://www.gap-system.org)

[8] Thompson, John G. Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Am. Math. Soc., Volume 74 (1968), pp. 383-437 | DOI | MR | Zbl

Cité par Sources :