Let be a finite group. We prove that if the number of Sylow -subgroups of is at most and the number of Sylow -subgroups of is at most , then is solvable. This is a strong form of a recent conjecture of Robati.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_11-12_1227_0, author = {Anabanti, Chimere Stanley and Moret\'o, Alexander and Zarrin, Mohammad}, title = {Influence of the number of {Sylow} subgroups on solvability of finite groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {1227--1230}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {11-12}, year = {2020}, doi = {10.5802/crmath.146}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.146/} }
TY - JOUR AU - Anabanti, Chimere Stanley AU - Moretó, Alexander AU - Zarrin, Mohammad TI - Influence of the number of Sylow subgroups on solvability of finite groups JO - Comptes Rendus. Mathématique PY - 2020 SP - 1227 EP - 1230 VL - 358 IS - 11-12 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.146/ DO - 10.5802/crmath.146 LA - en ID - CRMATH_2020__358_11-12_1227_0 ER -
%0 Journal Article %A Anabanti, Chimere Stanley %A Moretó, Alexander %A Zarrin, Mohammad %T Influence of the number of Sylow subgroups on solvability of finite groups %J Comptes Rendus. Mathématique %D 2020 %P 1227-1230 %V 358 %N 11-12 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.146/ %R 10.5802/crmath.146 %G en %F CRMATH_2020__358_11-12_1227_0
Anabanti, Chimere Stanley; Moretó, Alexander; Zarrin, Mohammad. Influence of the number of Sylow subgroups on solvability of finite groups. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1227-1230. doi : 10.5802/crmath.146. http://www.numdam.org/articles/10.5802/crmath.146/
[1] Subgroups of prime power index in a simple group, J. Algebra, Volume 81 (1983), pp. 312-319 | MR | Zbl
[2] On the number of Sylow subgroups in a finite group, J. Algebra, Volume 73 (1967), pp. 363-371 | DOI | MR | Zbl
[3] The Theory of Finite Groups: An Introduction, Universitext, Springer, 2004 | Zbl
[4] In search of non-solvable groups of central type, Pac. J. Math., Volume 82 (1979) no. 2, pp. 485-492 | DOI | Zbl
[5] A solvability criterion for finite goups related to the number of Sylow subgroups, Commun. Algebra, Volume 48 (2020) no. 12, pp. 5176-5180 | DOI | MR | Zbl
[6] On a class of doubly transitive groups, Ann. Math., Volume 75 (1962), pp. 105-145 | DOI | MR | Zbl
[7] GAP – Groups, Algorithms, and Programming, 2019 (Version 4.10.2, https://www.gap-system.org)
[8] Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Am. Math. Soc., Volume 74 (1968), pp. 383-437 | DOI | MR | Zbl
Cité par Sources :