Analyse et géométrie complexes
On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis
Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1213-1226.

In this paper we consider two functionals of the Fekete–Szegö type: Φf(μ)=a2a4-μa32 and Θf(μ)=a4-μa2a3 for analytic functions f(z)=z+a2z2+a3z3+..., zΔ, (Δ={z:|z|<1}) and for real numbers μ. For f which is univalent and convex in the direction of the imaginary axis, we find sharp bounds of the functionals Φf(μ) and Θf(μ). It is possible to transfer the results onto the class 𝒦(i) of functions convex in the direction of the imaginary axis with real coefficients as well as onto the class 𝒯 of typically real functions. As corollaries, we obtain bounds of the second Hankel determinant in 𝒦(i) and 𝒯.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.144
Classification : 30C50
Zaprawa, Paweł 1

1 Lublin University of Technology, Department of Mathematics, Faculty of Mechanical Engineering, Nadbystrzycka 38D, 20-618, Lublin, Poland
@article{CRMATH_2020__358_11-12_1213_0,
     author = {Zaprawa, Pawe{\l}},
     title = {On the {Fekete{\textendash}Szeg\"o} type functionals for functions which are convex in the direction of the imaginary axis},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1213--1226},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.144},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.144/}
}
TY  - JOUR
AU  - Zaprawa, Paweł
TI  - On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1213
EP  - 1226
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.144/
DO  - 10.5802/crmath.144
LA  - en
ID  - CRMATH_2020__358_11-12_1213_0
ER  - 
%0 Journal Article
%A Zaprawa, Paweł
%T On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis
%J Comptes Rendus. Mathématique
%D 2020
%P 1213-1226
%V 358
%N 11-12
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.144/
%R 10.5802/crmath.144
%G en
%F CRMATH_2020__358_11-12_1213_0
Zaprawa, Paweł. On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1213-1226. doi : 10.5802/crmath.144. https://www.numdam.org/articles/10.5802/crmath.144/

[1] Brown, Johnny E.; Tsao, Anna On the Zalcman conjecture for starlike and typically real functions, Math. Z., Volume 191 (1986) no. 3, pp. 467-474 | DOI | MR | Zbl

[2] Cho, Nak Eun; Kowalczyk, Bogumiła; Kwon, On Sang; Lecko, Adam; Sim, Young-Jong Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal., Volume 11 (2017) no. 2, pp. 429-439 | MR | Zbl

[3] Cho, Nak Eun; Kowalczyk, Bogumiła; Kwon, On Sang; Lecko, Adam; Sim, Young-Jong The bounds of some determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc., Volume 41 (2018) no. 1, pp. 523-535 | MR | Zbl

[4] Choi, Jae Ho; Kim, Yong Chan; Sugawa, Toshiyuki A general approach to the Fekete–Szegö problem, J. Math. Soc. Japan, Volume 59 (2007) no. 3, pp. 707-727 | DOI | Zbl

[5] Efraimidis, Iason; Vukotić, Dragan Applications of Livingston-type inequalities to the generalized Zalcman functional, Math. Nachr., Volume 291 (2018) no. 10, pp. 1502-1513 | DOI | MR | Zbl

[6] Fekete, Michael; Szegö, Gábor Eine Bemerkung uber ungerade schlichte Funktionen, J. Lond. Math. Soc., Volume 8 (1933) no. 2, pp. 85-89 | DOI | MR | Zbl

[7] Hayami, Toshio; Owa, Shigeyoshi Generalized Hankel determinant for certain classes, Int. J. Math. Anal., Ruse, Volume 4 (2010) no. 49-52, pp. 2573-2585 | MR | Zbl

[8] Hayman, Walter Kurt On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc., Volume 18 (1968), pp. 77-94 | DOI | MR | Zbl

[9] Janteng, Aini; Halim, Suzeini Abdul; Darus, Maslina Hankel determinant for starlike and convex functions, Int. J. Math. Anal., Ruse, Volume 1 (2007) no. 13-16, pp. 619-625 | MR | Zbl

[10] Kaplan, Wilfred Close to convex schlicht functions, Mich. Math. J., Volume 1 (1952), pp. 169-185 | MR | Zbl

[11] Koepf, Wolfram On the Fekete–Szegö problem for close-to-convex functions, Proc. Am. Math. Soc., Volume 101 (1987) no. 1, pp. 89-95 | Zbl

[12] Krishna, Deekonda Vamshee; Ramreddy, Thoutreddy Hankel determinant for starlike and convex functions of order alpha, Tbil. Math. J., Volume 5 (2012) no. 1, pp. 65-76 | DOI | MR | Zbl

[13] Krushkal, Samuel Univalent functions and holomorphic motions, J. Anal. Math., Volume 66 (1995), pp. 253-275 | DOI | MR | Zbl

[14] Krushkal, Samuel Proof of the Zalcman conjecture for initial coefficients, Georgian Math. J., Volume 17 (2010) no. 4, pp. 663-681 | MR | Zbl

[15] Lee, See Keong; Ravichandran, Vaithiyanathan; Supramaniam, Shamani Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., Volume 2013 (2013), 281, 17 pages | MR | Zbl

[16] Li, Liulan; Ponnusamy, Saminathan On the generalized Zalcman functional λan2-a2n-1 in the close-to-convex family, Proc. Am. Math. Soc., Volume 145 (2017) no. 2, pp. 833-846 | MR | Zbl

[17] Libera, Richard J.; Złotkiewicz, Eligiusz J. Early coefficients of the inverse of a regular convex function, Proc. Am. Math. Soc., Volume 85 (1982) no. é, pp. 225-230 | DOI | MR | Zbl

[18] Ma, Wancang The Zalcman conjecture for close-to-convex functions, Proc. Am. Math. Soc., Volume 104 (1988) no. 3, pp. 741-744 | MR | Zbl

[19] Ma, William Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., Volume 234 (1999) no. 1, pp. 328-339 | MR | Zbl

[20] Noonan, James W.; Thomas, Derek Keith On the Hankel determinants of areally mean p-valent functions, Proc. Lond. Math. Soc., Volume 25 (1972), pp. 503-524 | DOI | MR | Zbl

[21] Noor, Khalida Inayat On the Hankel determinant problem for strongly close-to-convex functions, J. Nat. Geom., Volume 11 (1997) no. 1, pp. 29-34 | MR | Zbl

[22] Ohno, Rintaro; Sugawa, Toshiyuki Coefficient estimates of analytic endomorphisms of the unit disk fixing a point with applications to concave functions, Kyoto J. Math., Volume 58 (2018) no. 2, pp. 227-241 | DOI | MR | Zbl

[23] Pommerenke, Christian On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., Volume 41 (1966), pp. 111-122 | DOI | MR | Zbl

[24] Pommerenke, Christian On the Hankel determinants of univalent functions, Mathematika, Volume 14 (1967), pp. 108-112 | DOI | MR | Zbl

[25] Răducanu, Dorina; Zaprawa, Paweł Second Hankel determinant for close-to-convex functions, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 10, pp. 1063-1071 | DOI | MR | Zbl

[26] Robertson, Malcolm I. S. On the theory of univalent functions, Ann. Math., Volume 37 (1936) no. 2, pp. 374-408 | DOI | MR | Zbl

[27] Royster, Wimberley C.; Ziegler, Michael Univalent functions convex in one direction, Publ. Math., Volume 23 (1976) no. 3-4, pp. 340-345 | MR | Zbl

[28] Trabka-Wiȩcaław, Kataezyna; Zaprawa, Paweł; Gregorczyk, Magdalena; Rysak, Andrzej On the Fekete–Szegö type functionals for close-to-convex functions, Symmetry, Volume 11 (2019) no. 12, 1497, 17 pages | DOI

[29] Zaprawa, Paweł Second Hankel determinants for the class of typically real functions, Abstr. Appl. Anal., Volume 2016 (2016) no. 7, 3792367, 7 pages | MR | Zbl

[30] Zaprawa, Paweł On the Fekete–Szegö type functionals for starlike and convex functions, Turk. J. Math., Volume 42 (2018) no. 2, pp. 537-547 | Zbl

Cité par Sources :