In this paper we consider two functionals of the Fekete–Szegö type:
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_11-12_1213_0, author = {Zaprawa, Pawe{\l}}, title = {On the {Fekete{\textendash}Szeg\"o} type functionals for functions which are convex in the direction of the imaginary axis}, journal = {Comptes Rendus. Math\'ematique}, pages = {1213--1226}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {11-12}, year = {2020}, doi = {10.5802/crmath.144}, language = {en}, url = {https://www.numdam.org/articles/10.5802/crmath.144/} }
TY - JOUR AU - Zaprawa, Paweł TI - On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis JO - Comptes Rendus. Mathématique PY - 2020 SP - 1213 EP - 1226 VL - 358 IS - 11-12 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.144/ DO - 10.5802/crmath.144 LA - en ID - CRMATH_2020__358_11-12_1213_0 ER -
%0 Journal Article %A Zaprawa, Paweł %T On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis %J Comptes Rendus. Mathématique %D 2020 %P 1213-1226 %V 358 %N 11-12 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.144/ %R 10.5802/crmath.144 %G en %F CRMATH_2020__358_11-12_1213_0
Zaprawa, Paweł. On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1213-1226. doi : 10.5802/crmath.144. https://www.numdam.org/articles/10.5802/crmath.144/
[1] On the Zalcman conjecture for starlike and typically real functions, Math. Z., Volume 191 (1986) no. 3, pp. 467-474 | DOI | MR | Zbl
[2] Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal., Volume 11 (2017) no. 2, pp. 429-439 | MR | Zbl
[3] The bounds of some determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc., Volume 41 (2018) no. 1, pp. 523-535 | MR | Zbl
[4] A general approach to the Fekete–Szegö problem, J. Math. Soc. Japan, Volume 59 (2007) no. 3, pp. 707-727 | DOI | Zbl
[5] Applications of Livingston-type inequalities to the generalized Zalcman functional, Math. Nachr., Volume 291 (2018) no. 10, pp. 1502-1513 | DOI | MR | Zbl
[6] Eine Bemerkung uber ungerade schlichte Funktionen, J. Lond. Math. Soc., Volume 8 (1933) no. 2, pp. 85-89 | DOI | MR | Zbl
[7] Generalized Hankel determinant for certain classes, Int. J. Math. Anal., Ruse, Volume 4 (2010) no. 49-52, pp. 2573-2585 | MR | Zbl
[8] On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc., Volume 18 (1968), pp. 77-94 | DOI | MR | Zbl
[9] Hankel determinant for starlike and convex functions, Int. J. Math. Anal., Ruse, Volume 1 (2007) no. 13-16, pp. 619-625 | MR | Zbl
[10] Close to convex schlicht functions, Mich. Math. J., Volume 1 (1952), pp. 169-185 | MR | Zbl
[11] On the Fekete–Szegö problem for close-to-convex functions, Proc. Am. Math. Soc., Volume 101 (1987) no. 1, pp. 89-95 | Zbl
[12] Hankel determinant for starlike and convex functions of order alpha, Tbil. Math. J., Volume 5 (2012) no. 1, pp. 65-76 | DOI | MR | Zbl
[13] Univalent functions and holomorphic motions, J. Anal. Math., Volume 66 (1995), pp. 253-275 | DOI | MR | Zbl
[14] Proof of the Zalcman conjecture for initial coefficients, Georgian Math. J., Volume 17 (2010) no. 4, pp. 663-681 | MR | Zbl
[15] Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., Volume 2013 (2013), 281, 17 pages | MR | Zbl
[16] On the generalized Zalcman functional
[17] Early coefficients of the inverse of a regular convex function, Proc. Am. Math. Soc., Volume 85 (1982) no. é, pp. 225-230 | DOI | MR | Zbl
[18] The Zalcman conjecture for close-to-convex functions, Proc. Am. Math. Soc., Volume 104 (1988) no. 3, pp. 741-744 | MR | Zbl
[19] Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., Volume 234 (1999) no. 1, pp. 328-339 | MR | Zbl
[20] On the Hankel determinants of areally mean p-valent functions, Proc. Lond. Math. Soc., Volume 25 (1972), pp. 503-524 | DOI | MR | Zbl
[21] On the Hankel determinant problem for strongly close-to-convex functions, J. Nat. Geom., Volume 11 (1997) no. 1, pp. 29-34 | MR | Zbl
[22] Coefficient estimates of analytic endomorphisms of the unit disk fixing a point with applications to concave functions, Kyoto J. Math., Volume 58 (2018) no. 2, pp. 227-241 | DOI | MR | Zbl
[23] On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., Volume 41 (1966), pp. 111-122 | DOI | MR | Zbl
[24] On the Hankel determinants of univalent functions, Mathematika, Volume 14 (1967), pp. 108-112 | DOI | MR | Zbl
[25] Second Hankel determinant for close-to-convex functions, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 10, pp. 1063-1071 | DOI | MR | Zbl
[26] On the theory of univalent functions, Ann. Math., Volume 37 (1936) no. 2, pp. 374-408 | DOI | MR | Zbl
[27] Univalent functions convex in one direction, Publ. Math., Volume 23 (1976) no. 3-4, pp. 340-345 | MR | Zbl
[28] On the Fekete–Szegö type functionals for close-to-convex functions, Symmetry, Volume 11 (2019) no. 12, 1497, 17 pages | DOI
[29] Second Hankel determinants for the class of typically real functions, Abstr. Appl. Anal., Volume 2016 (2016) no. 7, 3792367, 7 pages | MR | Zbl
[30] On the Fekete–Szegö type functionals for starlike and convex functions, Turk. J. Math., Volume 42 (2018) no. 2, pp. 537-547 | Zbl
Cité par Sources :