In this paper we consider two functionals of the Fekete–Szegö type: and for analytic functions , , () and for real numbers . For which is univalent and convex in the direction of the imaginary axis, we find sharp bounds of the functionals and . It is possible to transfer the results onto the class of functions convex in the direction of the imaginary axis with real coefficients as well as onto the class of typically real functions. As corollaries, we obtain bounds of the second Hankel determinant in and .
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_11-12_1213_0, author = {Zaprawa, Pawe{\l}}, title = {On the {Fekete{\textendash}Szeg\"o} type functionals for functions which are convex in the direction of the imaginary axis}, journal = {Comptes Rendus. Math\'ematique}, pages = {1213--1226}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {11-12}, year = {2020}, doi = {10.5802/crmath.144}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.144/} }
TY - JOUR AU - Zaprawa, Paweł TI - On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis JO - Comptes Rendus. Mathématique PY - 2020 SP - 1213 EP - 1226 VL - 358 IS - 11-12 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.144/ DO - 10.5802/crmath.144 LA - en ID - CRMATH_2020__358_11-12_1213_0 ER -
%0 Journal Article %A Zaprawa, Paweł %T On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis %J Comptes Rendus. Mathématique %D 2020 %P 1213-1226 %V 358 %N 11-12 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.144/ %R 10.5802/crmath.144 %G en %F CRMATH_2020__358_11-12_1213_0
Zaprawa, Paweł. On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1213-1226. doi : 10.5802/crmath.144. http://www.numdam.org/articles/10.5802/crmath.144/
[1] On the Zalcman conjecture for starlike and typically real functions, Math. Z., Volume 191 (1986) no. 3, pp. 467-474 | DOI | MR | Zbl
[2] Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal., Volume 11 (2017) no. 2, pp. 429-439 | MR | Zbl
[3] The bounds of some determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc., Volume 41 (2018) no. 1, pp. 523-535 | MR | Zbl
[4] A general approach to the Fekete–Szegö problem, J. Math. Soc. Japan, Volume 59 (2007) no. 3, pp. 707-727 | DOI | Zbl
[5] Applications of Livingston-type inequalities to the generalized Zalcman functional, Math. Nachr., Volume 291 (2018) no. 10, pp. 1502-1513 | DOI | MR | Zbl
[6] Eine Bemerkung uber ungerade schlichte Funktionen, J. Lond. Math. Soc., Volume 8 (1933) no. 2, pp. 85-89 | DOI | MR | Zbl
[7] Generalized Hankel determinant for certain classes, Int. J. Math. Anal., Ruse, Volume 4 (2010) no. 49-52, pp. 2573-2585 | MR | Zbl
[8] On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc., Volume 18 (1968), pp. 77-94 | DOI | MR | Zbl
[9] Hankel determinant for starlike and convex functions, Int. J. Math. Anal., Ruse, Volume 1 (2007) no. 13-16, pp. 619-625 | MR | Zbl
[10] Close to convex schlicht functions, Mich. Math. J., Volume 1 (1952), pp. 169-185 | MR | Zbl
[11] On the Fekete–Szegö problem for close-to-convex functions, Proc. Am. Math. Soc., Volume 101 (1987) no. 1, pp. 89-95 | Zbl
[12] Hankel determinant for starlike and convex functions of order alpha, Tbil. Math. J., Volume 5 (2012) no. 1, pp. 65-76 | DOI | MR | Zbl
[13] Univalent functions and holomorphic motions, J. Anal. Math., Volume 66 (1995), pp. 253-275 | DOI | MR | Zbl
[14] Proof of the Zalcman conjecture for initial coefficients, Georgian Math. J., Volume 17 (2010) no. 4, pp. 663-681 | MR | Zbl
[15] Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., Volume 2013 (2013), 281, 17 pages | MR | Zbl
[16] On the generalized Zalcman functional in the close-to-convex family, Proc. Am. Math. Soc., Volume 145 (2017) no. 2, pp. 833-846 | MR | Zbl
[17] Early coefficients of the inverse of a regular convex function, Proc. Am. Math. Soc., Volume 85 (1982) no. é, pp. 225-230 | DOI | MR | Zbl
[18] The Zalcman conjecture for close-to-convex functions, Proc. Am. Math. Soc., Volume 104 (1988) no. 3, pp. 741-744 | MR | Zbl
[19] Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., Volume 234 (1999) no. 1, pp. 328-339 | MR | Zbl
[20] On the Hankel determinants of areally mean p-valent functions, Proc. Lond. Math. Soc., Volume 25 (1972), pp. 503-524 | DOI | MR | Zbl
[21] On the Hankel determinant problem for strongly close-to-convex functions, J. Nat. Geom., Volume 11 (1997) no. 1, pp. 29-34 | MR | Zbl
[22] Coefficient estimates of analytic endomorphisms of the unit disk fixing a point with applications to concave functions, Kyoto J. Math., Volume 58 (2018) no. 2, pp. 227-241 | DOI | MR | Zbl
[23] On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., Volume 41 (1966), pp. 111-122 | DOI | MR | Zbl
[24] On the Hankel determinants of univalent functions, Mathematika, Volume 14 (1967), pp. 108-112 | DOI | MR | Zbl
[25] Second Hankel determinant for close-to-convex functions, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 10, pp. 1063-1071 | DOI | MR | Zbl
[26] On the theory of univalent functions, Ann. Math., Volume 37 (1936) no. 2, pp. 374-408 | DOI | MR | Zbl
[27] Univalent functions convex in one direction, Publ. Math., Volume 23 (1976) no. 3-4, pp. 340-345 | MR | Zbl
[28] On the Fekete–Szegö type functionals for close-to-convex functions, Symmetry, Volume 11 (2019) no. 12, 1497, 17 pages | DOI
[29] Second Hankel determinants for the class of typically real functions, Abstr. Appl. Anal., Volume 2016 (2016) no. 7, 3792367, 7 pages | MR | Zbl
[30] On the Fekete–Szegö type functionals for starlike and convex functions, Turk. J. Math., Volume 42 (2018) no. 2, pp. 537-547 | Zbl
Cité par Sources :