Analyse et géométrie complexes
On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis
Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1213-1226.

In this paper we consider two functionals of the Fekete–Szegö type: Φ f (μ)=a 2 a 4 -μa 3 2 and Θ f (μ)=a 4 -μa 2 a 3 for analytic functions f(z)=z+a 2 z 2 +a 3 z 3 +..., zΔ, (Δ={z:|z|<1}) and for real numbers μ. For f which is univalent and convex in the direction of the imaginary axis, we find sharp bounds of the functionals Φ f (μ) and Θ f (μ). It is possible to transfer the results onto the class 𝒦 (i) of functions convex in the direction of the imaginary axis with real coefficients as well as onto the class 𝒯 of typically real functions. As corollaries, we obtain bounds of the second Hankel determinant in 𝒦 (i) and 𝒯.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.144
Classification : 30C50
Zaprawa, Paweł 1

1 Lublin University of Technology, Department of Mathematics, Faculty of Mechanical Engineering, Nadbystrzycka 38D, 20-618, Lublin, Poland
@article{CRMATH_2020__358_11-12_1213_0,
     author = {Zaprawa, Pawe{\l}},
     title = {On the {Fekete{\textendash}Szeg\"o} type functionals for functions which are convex in the direction of the imaginary axis},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1213--1226},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.144},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.144/}
}
TY  - JOUR
AU  - Zaprawa, Paweł
TI  - On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1213
EP  - 1226
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.144/
DO  - 10.5802/crmath.144
LA  - en
ID  - CRMATH_2020__358_11-12_1213_0
ER  - 
%0 Journal Article
%A Zaprawa, Paweł
%T On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis
%J Comptes Rendus. Mathématique
%D 2020
%P 1213-1226
%V 358
%N 11-12
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.144/
%R 10.5802/crmath.144
%G en
%F CRMATH_2020__358_11-12_1213_0
Zaprawa, Paweł. On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1213-1226. doi : 10.5802/crmath.144. http://www.numdam.org/articles/10.5802/crmath.144/

[1] Brown, Johnny E.; Tsao, Anna On the Zalcman conjecture for starlike and typically real functions, Math. Z., Volume 191 (1986) no. 3, pp. 467-474 | DOI | MR | Zbl

[2] Cho, Nak Eun; Kowalczyk, Bogumiła; Kwon, On Sang; Lecko, Adam; Sim, Young-Jong Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal., Volume 11 (2017) no. 2, pp. 429-439 | MR | Zbl

[3] Cho, Nak Eun; Kowalczyk, Bogumiła; Kwon, On Sang; Lecko, Adam; Sim, Young-Jong The bounds of some determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc., Volume 41 (2018) no. 1, pp. 523-535 | MR | Zbl

[4] Choi, Jae Ho; Kim, Yong Chan; Sugawa, Toshiyuki A general approach to the Fekete–Szegö problem, J. Math. Soc. Japan, Volume 59 (2007) no. 3, pp. 707-727 | DOI | Zbl

[5] Efraimidis, Iason; Vukotić, Dragan Applications of Livingston-type inequalities to the generalized Zalcman functional, Math. Nachr., Volume 291 (2018) no. 10, pp. 1502-1513 | DOI | MR | Zbl

[6] Fekete, Michael; Szegö, Gábor Eine Bemerkung uber ungerade schlichte Funktionen, J. Lond. Math. Soc., Volume 8 (1933) no. 2, pp. 85-89 | DOI | MR | Zbl

[7] Hayami, Toshio; Owa, Shigeyoshi Generalized Hankel determinant for certain classes, Int. J. Math. Anal., Ruse, Volume 4 (2010) no. 49-52, pp. 2573-2585 | MR | Zbl

[8] Hayman, Walter Kurt On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc., Volume 18 (1968), pp. 77-94 | DOI | MR | Zbl

[9] Janteng, Aini; Halim, Suzeini Abdul; Darus, Maslina Hankel determinant for starlike and convex functions, Int. J. Math. Anal., Ruse, Volume 1 (2007) no. 13-16, pp. 619-625 | MR | Zbl

[10] Kaplan, Wilfred Close to convex schlicht functions, Mich. Math. J., Volume 1 (1952), pp. 169-185 | MR | Zbl

[11] Koepf, Wolfram On the Fekete–Szegö problem for close-to-convex functions, Proc. Am. Math. Soc., Volume 101 (1987) no. 1, pp. 89-95 | Zbl

[12] Krishna, Deekonda Vamshee; Ramreddy, Thoutreddy Hankel determinant for starlike and convex functions of order alpha, Tbil. Math. J., Volume 5 (2012) no. 1, pp. 65-76 | DOI | MR | Zbl

[13] Krushkal, Samuel Univalent functions and holomorphic motions, J. Anal. Math., Volume 66 (1995), pp. 253-275 | DOI | MR | Zbl

[14] Krushkal, Samuel Proof of the Zalcman conjecture for initial coefficients, Georgian Math. J., Volume 17 (2010) no. 4, pp. 663-681 | MR | Zbl

[15] Lee, See Keong; Ravichandran, Vaithiyanathan; Supramaniam, Shamani Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., Volume 2013 (2013), 281, 17 pages | MR | Zbl

[16] Li, Liulan; Ponnusamy, Saminathan On the generalized Zalcman functional λa n 2 -a 2n-1 in the close-to-convex family, Proc. Am. Math. Soc., Volume 145 (2017) no. 2, pp. 833-846 | MR | Zbl

[17] Libera, Richard J.; Złotkiewicz, Eligiusz J. Early coefficients of the inverse of a regular convex function, Proc. Am. Math. Soc., Volume 85 (1982) no. é, pp. 225-230 | DOI | MR | Zbl

[18] Ma, Wancang The Zalcman conjecture for close-to-convex functions, Proc. Am. Math. Soc., Volume 104 (1988) no. 3, pp. 741-744 | MR | Zbl

[19] Ma, William Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., Volume 234 (1999) no. 1, pp. 328-339 | MR | Zbl

[20] Noonan, James W.; Thomas, Derek Keith On the Hankel determinants of areally mean p-valent functions, Proc. Lond. Math. Soc., Volume 25 (1972), pp. 503-524 | DOI | MR | Zbl

[21] Noor, Khalida Inayat On the Hankel determinant problem for strongly close-to-convex functions, J. Nat. Geom., Volume 11 (1997) no. 1, pp. 29-34 | MR | Zbl

[22] Ohno, Rintaro; Sugawa, Toshiyuki Coefficient estimates of analytic endomorphisms of the unit disk fixing a point with applications to concave functions, Kyoto J. Math., Volume 58 (2018) no. 2, pp. 227-241 | DOI | MR | Zbl

[23] Pommerenke, Christian On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., Volume 41 (1966), pp. 111-122 | DOI | MR | Zbl

[24] Pommerenke, Christian On the Hankel determinants of univalent functions, Mathematika, Volume 14 (1967), pp. 108-112 | DOI | MR | Zbl

[25] Răducanu, Dorina; Zaprawa, Paweł Second Hankel determinant for close-to-convex functions, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 10, pp. 1063-1071 | DOI | MR | Zbl

[26] Robertson, Malcolm I. S. On the theory of univalent functions, Ann. Math., Volume 37 (1936) no. 2, pp. 374-408 | DOI | MR | Zbl

[27] Royster, Wimberley C.; Ziegler, Michael Univalent functions convex in one direction, Publ. Math., Volume 23 (1976) no. 3-4, pp. 340-345 | MR | Zbl

[28] Trabka-Wiȩcaław, Kataezyna; Zaprawa, Paweł; Gregorczyk, Magdalena; Rysak, Andrzej On the Fekete–Szegö type functionals for close-to-convex functions, Symmetry, Volume 11 (2019) no. 12, 1497, 17 pages | DOI

[29] Zaprawa, Paweł Second Hankel determinants for the class of typically real functions, Abstr. Appl. Anal., Volume 2016 (2016) no. 7, 3792367, 7 pages | MR | Zbl

[30] Zaprawa, Paweł On the Fekete–Szegö type functionals for starlike and convex functions, Turk. J. Math., Volume 42 (2018) no. 2, pp. 537-547 | Zbl

Cité par Sources :