Analyse harmonique
Fourier Quasicrystals with Unit Masses
Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1207-1211.

The sum of δ-measures sitting at the points of a discrete set Λ forms a Fourier quasicrystal if and only if Λ is the zero set of an exponential polynomial with imaginary frequencies.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.142
Olevskii, Alexander 1 ; Ulanovskii, Alexander 2

1 School of Mathematics, Tel Aviv University, 69978 Ramat Aviv, Israel.
2 Stavanger University, 4036 Stavanger, Norway.
@article{CRMATH_2020__358_11-12_1207_0,
     author = {Olevskii, Alexander and Ulanovskii, Alexander},
     title = {Fourier {Quasicrystals} with {Unit} {Masses}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1207--1211},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.142},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.142/}
}
TY  - JOUR
AU  - Olevskii, Alexander
AU  - Ulanovskii, Alexander
TI  - Fourier Quasicrystals with Unit Masses
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1207
EP  - 1211
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.142/
DO  - 10.5802/crmath.142
LA  - en
ID  - CRMATH_2020__358_11-12_1207_0
ER  - 
%0 Journal Article
%A Olevskii, Alexander
%A Ulanovskii, Alexander
%T Fourier Quasicrystals with Unit Masses
%J Comptes Rendus. Mathématique
%D 2020
%P 1207-1211
%V 358
%N 11-12
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.142/
%R 10.5802/crmath.142
%G en
%F CRMATH_2020__358_11-12_1207_0
Olevskii, Alexander; Ulanovskii, Alexander. Fourier Quasicrystals with Unit Masses. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1207-1211. doi : 10.5802/crmath.142. http://www.numdam.org/articles/10.5802/crmath.142/

[1] Kolountzakis, Mihail N. Fourier pairs of discrete support with little structure, J. Fourier Anal. Appl., Volume 22 (2016) no. 1, pp. 1-5 | DOI | MR | Zbl

[2] Kurasov, Pavel; Sarnak, Peter C. Stable polynomials and crystalline measures, J. Math. Phys., Volume 61 (2020) no. 8, 083501, 13 pages | DOI | MR | Zbl

[3] Lev, Nir; Olevskii, Alexander Quasicrystals with discrete support and spectrum, Rev. Mat. Iberoam., Volume 32 (2016) no. 4, pp. 1341-1352 | MR | Zbl

[4] Levin, Boris Ya. Lectures on Entire Fuctions, Translations of Mathematical Monographs, 150, American Mathematical Society, 1996 | Zbl

[5] Meyer, Yves F. Quasicrystals, diophantine approximation and algebraic numbers, Beyond quasicrystals. Papers of the winter school, Les Houches, France, March 7-18, 1994, Springer, 1995, pp. 3-16 | DOI | Zbl

[6] Meyer, Yves F. Measures with locally finite support and spectrum, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) no. 12, pp. 3152-3158 | DOI | MR | Zbl

[7] Meyer, Yves F. Measures with locally finite support and spectrum, Rev. Mat. Iberoam., Volume 33 (2017) no. 3, pp. 1025-1036 | DOI | MR | Zbl

[8] Meyer, Yves F. Curved model sets and crystalline measures (2020) (to be published in Applied and Numerical Harmonic Analysis, Springer)

[9] Olevskii, Alexander; Ulanovskii, Alexander Fourier quasicrystals with unit masses (2020) (https://arxiv.org/abs/2009.12810)

[10] Olevskii, Alexander; Ulanovskii, Alexander A Simple Crystalline Measure (2020) (https://arxiv.org/abs/2006.12037)

Cité par Sources :