The Erdős–Lax Theorem states that if is a polynomial of degree having no zeros in then
In this paper, we prove a sharpening of the above inequality (1). In order to prove our result we prove a sharpened form of the well-known Theorem of Laguerre on polynomials, which itself could be of independent interest.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G9_1081_0, author = {Kumar, Prasanna}, title = {On the {Erd\H{o}s{\textendash}Lax} {Inequality}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1081--1085}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G9}, year = {2022}, doi = {10.5802/crmath.141}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.141/} }
TY - JOUR AU - Kumar, Prasanna TI - On the Erdős–Lax Inequality JO - Comptes Rendus. Mathématique PY - 2022 SP - 1081 EP - 1085 VL - 360 IS - G9 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.141/ DO - 10.5802/crmath.141 LA - en ID - CRMATH_2022__360_G9_1081_0 ER -
Kumar, Prasanna. On the Erdős–Lax Inequality. Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 1081-1085. doi : 10.5802/crmath.141. http://www.numdam.org/articles/10.5802/crmath.141/
[1] On a theorem of S. Bernstein, Pac. J. Math., Volume 5 (1955), pp. 849-852 | DOI | Zbl
[2] Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réelle, Collection de monographies sur la théorie des fonctions, Gauthier-Villars, 1926
[3] On extremal properties of derivatives of polynomials, Ann. Math., Volume 41 (1940), pp. 310-313 | DOI | MR | Zbl
[4] Functions of exponential type not vanishing in a halfplane and related polynomials, Trans. Am. Math. Soc., Volume 137 (1969), pp. 501-517 | DOI | Zbl
[5] Oeuvres Vol. 1, Nouv. Ann. Math., Volume 17 (1878) no. 2, pp. 20-25
[6] Proof of a conjecture of P. Erdős on the derivative of a polynomial, Bull. Am. Math. Soc., Volume 50 (1944), pp. 509-513 | Zbl
[7] On the derivative of a polynomial, J. Lond. Math. Soc., Volume 1 (1969), pp. 57-60 | DOI | Zbl
[8] Aufgaben und Lehrsätze aus der Analysis, Grundlehren der Mathematischen Wissenschaften, 19, Springer, 1925
[9] Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Am. Math. Soc., Volume 47 (1941), pp. 565-579 | DOI | MR | Zbl
[10] Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z., Volume 13 (1922), pp. 28-55 | DOI | Zbl
Cité par Sources :