This paper proves the Baum–Katz theorem for sequences of pairwise independent identically distributed random variables with general norming constants under optimal moment conditions. The proof exploits some properties of slowly varying functions and the de Bruijn conjugates, and uses the techniques developed by Rio (1995) to avoid using the maximal type inequalities.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_11-12_1231_0, author = {Th\`anh, L\^e Vǎn}, title = {On the {Baum{\textendash}Katz} theorem for sequences of pairwise independent random variables with regularly varying normalizing constants}, journal = {Comptes Rendus. Math\'ematique}, pages = {1231--1238}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {11-12}, year = {2020}, doi = {10.5802/crmath.139}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.139/} }
TY - JOUR AU - Thành, Lê Vǎn TI - On the Baum–Katz theorem for sequences of pairwise independent random variables with regularly varying normalizing constants JO - Comptes Rendus. Mathématique PY - 2020 SP - 1231 EP - 1238 VL - 358 IS - 11-12 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.139/ DO - 10.5802/crmath.139 LA - en ID - CRMATH_2020__358_11-12_1231_0 ER -
%0 Journal Article %A Thành, Lê Vǎn %T On the Baum–Katz theorem for sequences of pairwise independent random variables with regularly varying normalizing constants %J Comptes Rendus. Mathématique %D 2020 %P 1231-1238 %V 358 %N 11-12 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.139/ %R 10.5802/crmath.139 %G en %F CRMATH_2020__358_11-12_1231_0
Thành, Lê Vǎn. On the Baum–Katz theorem for sequences of pairwise independent random variables with regularly varying normalizing constants. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1231-1238. doi : 10.5802/crmath.139. http://www.numdam.org/articles/10.5802/crmath.139/
[1] The Marcinkiewicz–Zygmund-type strong law of large numbers with general normalizing sequences, J. Theor. Probab. (2019), pp. 1-18 | DOI
[2] Convergence rates in the law of large numbers, Trans. Am. Math. Soc., Volume 120 (1965) no. 1, pp. 108-123 | DOI | MR | Zbl
[3] Regular variation, Encyclopedia of Mathematics and Its Applications, 27, Cambridge University Press, 1989 | MR | Zbl
[4] Slowly varying functions and asymptotic relations, J. Math. Anal. Appl., Volume 34 (1971) no. 2, pp. 302-315 | DOI | MR | Zbl
[5] On the strong law of large numbers for pairwise independent random variables, Acta Math. Hung., Volume 42 (1983) no. 3-4, pp. 319-330 | MR | Zbl
[6] An elementary proof of the strong law of large numbers, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 55 (1981) no. 1, pp. 119-122 | DOI | MR | Zbl
[7] Regularly varying sequences, Proc. Am. Math. Soc., Volume 41 (1973) no. 1, pp. 110-116 | DOI | MR | Zbl
[8] On the strong law of large numbers for sums of pairwise independent random variables, Stat. Probab. Lett., Volume 25 (1995) no. 1, pp. 21-26 | DOI | MR | Zbl
[9] A remark on the strong law of large numbers for sums of pairwise independent random variables, J. Math. Sci., Volume 75 (1995) no. 5, pp. 1944-1946 | DOI | MR | Zbl
[10] Vitesses de convergence dans la loi forte pour des suites dépendantes (Rates of convergence in the strong law for dependent sequences), C. R. Acad. Sci. Paris, Volume 320 (1995) no. 4, pp. 469-474 | MR | Zbl
[11] An interpretation of some aspects of Karamata’s theory of regular variation, Publ. Inst. Math., Volume 15 (1973) no. 29, pp. 111-119 | MR | Zbl
[12] Regularly varying functions, Lecture Notes in Mathematics, 508, Springer, 1976 | MR | Zbl
Cité par Sources :