Équations aux dérivées partielles
Asymptotic behavior of solutions of fully nonlinear equations over exterior domains
Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1187-1197.

In this paper, we consider the asymptotic behavior at infinity of solutions of a class of fully nonlinear elliptic equations F(D 2 u)=f(x) over exterior domains, where the Hessian matrix (D 2 u) tends to some symmetric positive definite matrix at infinity and f(x)=O(|x| -t ) at infinity with sharp condition t>2. Moreover, we also obtain the same result if (D 2 u) is only very close to some symmetric positive definite matrix at infinity.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.138
Classification : 35J60, 35B40
Jia, Xiaobiao 1

1 School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China.
@article{CRMATH_2020__358_11-12_1187_0,
     author = {Jia, Xiaobiao},
     title = {Asymptotic behavior of solutions of fully nonlinear equations over exterior domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1187--1197},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.138},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.138/}
}
TY  - JOUR
AU  - Jia, Xiaobiao
TI  - Asymptotic behavior of solutions of fully nonlinear equations over exterior domains
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1187
EP  - 1197
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.138/
DO  - 10.5802/crmath.138
LA  - en
ID  - CRMATH_2020__358_11-12_1187_0
ER  - 
%0 Journal Article
%A Jia, Xiaobiao
%T Asymptotic behavior of solutions of fully nonlinear equations over exterior domains
%J Comptes Rendus. Mathématique
%D 2020
%P 1187-1197
%V 358
%N 11-12
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.138/
%R 10.5802/crmath.138
%G en
%F CRMATH_2020__358_11-12_1187_0
Jia, Xiaobiao. Asymptotic behavior of solutions of fully nonlinear equations over exterior domains. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1187-1197. doi : 10.5802/crmath.138. http://www.numdam.org/articles/10.5802/crmath.138/

[1] Bao, Jiguang; Liu, Zixiao Asymptotic behavior at infinity of solutions of Lagrangian mean curvature equations (2001) (https://arxiv.org/abs/2001.01365)

[2] Bozhkov, Yuri D. A Liouville theorem for radial k-Hessian equations, Rend. Mat. Appl., Volume 17 (1997) no. 2, pp. 253-263 | MR | Zbl

[3] Caffarelli, Luis Ángel Topics in PDEs: The Monge–Ampère equation. Graduate course, Courant Institute, New York University, 1995

[4] Caffarelli, Luis Ángel; Cabré, Xavier Fully nonlinear elliptic equations, Colloquium Publications, 43, American Mathematical Society, 1995 | MR | Zbl

[5] Caffarelli, Luis Ángel; Li, Yan Yan An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., Volume 56 (2003) no. 5, pp. 549-583 | DOI | Zbl

[6] Calabi, Eugenio Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Mich. Math. J., Volume 5 (1958), pp. 105-126 | Zbl

[7] Chen, Li; Xiang, Ni Rigidity theorems for the entire solutions of 2-Hessian equation, J. Differ. Equations, Volume 267 (2019) no. 9, pp. 5202-5219 | DOI | MR | Zbl

[8] Cheng, Shiu-Yuen; Yau, Shing-Tung Complete affine hypersurfaces. I. The completeness of affine metrics, Commun. Pure Appl. Math., Volume 39 (1986) no. 6, pp. 839-866 | DOI | MR | Zbl

[9] Gilbarg, David; Serrin, J. On isolated singularities of solutions of second order elliptic differential equations, J. Anal. Math., Volume 4 (1956), pp. 309-340 | DOI | MR | Zbl

[10] Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order, Classics in Mathematics, 224, Springer, 2001 | Zbl

[11] Jia, Xiaobiao; Li, Dongsheng; Li, Zhisu Asymptotic behavior at infinity of solutions of Monge–Ampère equations in half spaces, J. Differ. Equations, Volume 269 (2020) no. 1, pp. 326-348 | Zbl

[12] Jörgens, Konrad über die Lösungen der Differentialgleichung rt-s 2 =1, Math. Ann., Volume 127 (1954), pp. 130-134 | DOI | Zbl

[13] Li, Dongsheng; Li, Zhisu On the exterior Dirichlet problem for Hessian quotient equations, J. Differ. Equations, Volume 264 (2018) no. 11, pp. 6633-6662 | MR | Zbl

[14] Li, Dongsheng; Li, Zhisu; Yuan, Yu A Bernstein problem for special Lagrangian equations in exterior domains, Adv. Math., Volume 361 (2020), 106927, 29 pages | MR | Zbl

[15] Li, Yan Yan; Nguyen, Luc Harnack inequalities and Bôcher-type theorems for conformally invariant, fully nonlinear degenerate elliptic equations, Commun. Pure Appl. Math., Volume 67 (2014) no. 11, pp. 1843-1876 | Zbl

[16] Li, Yan Yan; Nguyen, Luc Symmetry, quantitative Liouville theorems and analysis of large solutions of conformally invariant fully nonlinear elliptic equations, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 4, 99, 35 pages | MR | Zbl

[17] Li, Yan Yan; Nguyen, Luc; Wang, Bo Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 4, 96, 29 pages | MR | Zbl

[18] Li, Zhisu On the exterior Dirichlet problem for special Lagrangian equations, Trans. Am. Math. Soc., Volume 372 (2019) no. 2, pp. 889-924 | MR | Zbl

[19] Nakamori, Saori; Takimoto, Kazuhiro A Bernstein type theorem for parabolic k-Hessian equations, Nonlinear Anal., Theory Methods Appl., Volume 117 (2015), pp. 211-220 | DOI | MR | Zbl

[20] Pogorelov, Alekseĭ Vasil’evich On the improper convex affine hyperspheres, Geom. Dedicata, Volume 1 (1972) no. 1, pp. 33-46 | MR | Zbl

[21] Zhang, Wei; Bao, Jiguang Asymptotic behavior on a kind of parabolic Monge–Ampère equation, J. Differ. Equations, Volume 259 (2015) no. 1, pp. 344-370 | Zbl

[22] Zhang, Wei; Bao, Jiguang A Calabi theorem for solutions to the parabolic Monge–Ampère equation with periodic data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 5, pp. 1143-1173 | DOI | Zbl

[23] Zhang, Wei; Bao, Jiguang; Wang, Bo An extension of Jörgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 3, 90, 36 pages | Zbl

Cité par Sources :