In this paper, we consider the asymptotic behavior at infinity of solutions of a class of fully nonlinear elliptic equations over exterior domains, where the Hessian matrix tends to some symmetric positive definite matrix at infinity and at infinity with sharp condition . Moreover, we also obtain the same result if is only very close to some symmetric positive definite matrix at infinity.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_11-12_1187_0, author = {Jia, Xiaobiao}, title = {Asymptotic behavior of solutions of fully nonlinear equations over exterior domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {1187--1197}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {11-12}, year = {2020}, doi = {10.5802/crmath.138}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.138/} }
TY - JOUR AU - Jia, Xiaobiao TI - Asymptotic behavior of solutions of fully nonlinear equations over exterior domains JO - Comptes Rendus. Mathématique PY - 2020 SP - 1187 EP - 1197 VL - 358 IS - 11-12 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.138/ DO - 10.5802/crmath.138 LA - en ID - CRMATH_2020__358_11-12_1187_0 ER -
%0 Journal Article %A Jia, Xiaobiao %T Asymptotic behavior of solutions of fully nonlinear equations over exterior domains %J Comptes Rendus. Mathématique %D 2020 %P 1187-1197 %V 358 %N 11-12 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.138/ %R 10.5802/crmath.138 %G en %F CRMATH_2020__358_11-12_1187_0
Jia, Xiaobiao. Asymptotic behavior of solutions of fully nonlinear equations over exterior domains. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1187-1197. doi : 10.5802/crmath.138. http://www.numdam.org/articles/10.5802/crmath.138/
[1] Asymptotic behavior at infinity of solutions of Lagrangian mean curvature equations (2001) (https://arxiv.org/abs/2001.01365)
[2] A Liouville theorem for radial -Hessian equations, Rend. Mat. Appl., Volume 17 (1997) no. 2, pp. 253-263 | MR | Zbl
[3] Topics in PDEs: The Monge–Ampère equation. Graduate course, Courant Institute, New York University, 1995
[4] Fully nonlinear elliptic equations, Colloquium Publications, 43, American Mathematical Society, 1995 | MR | Zbl
[5] An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., Volume 56 (2003) no. 5, pp. 549-583 | DOI | Zbl
[6] Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Mich. Math. J., Volume 5 (1958), pp. 105-126 | Zbl
[7] Rigidity theorems for the entire solutions of 2-Hessian equation, J. Differ. Equations, Volume 267 (2019) no. 9, pp. 5202-5219 | DOI | MR | Zbl
[8] Complete affine hypersurfaces. I. The completeness of affine metrics, Commun. Pure Appl. Math., Volume 39 (1986) no. 6, pp. 839-866 | DOI | MR | Zbl
[9] On isolated singularities of solutions of second order elliptic differential equations, J. Anal. Math., Volume 4 (1956), pp. 309-340 | DOI | MR | Zbl
[10] Elliptic partial differential equations of second order, Classics in Mathematics, 224, Springer, 2001 | Zbl
[11] Asymptotic behavior at infinity of solutions of Monge–Ampère equations in half spaces, J. Differ. Equations, Volume 269 (2020) no. 1, pp. 326-348 | Zbl
[12] über die Lösungen der Differentialgleichung , Math. Ann., Volume 127 (1954), pp. 130-134 | DOI | Zbl
[13] On the exterior Dirichlet problem for Hessian quotient equations, J. Differ. Equations, Volume 264 (2018) no. 11, pp. 6633-6662 | MR | Zbl
[14] A Bernstein problem for special Lagrangian equations in exterior domains, Adv. Math., Volume 361 (2020), 106927, 29 pages | MR | Zbl
[15] Harnack inequalities and Bôcher-type theorems for conformally invariant, fully nonlinear degenerate elliptic equations, Commun. Pure Appl. Math., Volume 67 (2014) no. 11, pp. 1843-1876 | Zbl
[16] Symmetry, quantitative Liouville theorems and analysis of large solutions of conformally invariant fully nonlinear elliptic equations, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 4, 99, 35 pages | MR | Zbl
[17] Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 4, 96, 29 pages | MR | Zbl
[18] On the exterior Dirichlet problem for special Lagrangian equations, Trans. Am. Math. Soc., Volume 372 (2019) no. 2, pp. 889-924 | MR | Zbl
[19] A Bernstein type theorem for parabolic -Hessian equations, Nonlinear Anal., Theory Methods Appl., Volume 117 (2015), pp. 211-220 | DOI | MR | Zbl
[20] On the improper convex affine hyperspheres, Geom. Dedicata, Volume 1 (1972) no. 1, pp. 33-46 | MR | Zbl
[21] Asymptotic behavior on a kind of parabolic Monge–Ampère equation, J. Differ. Equations, Volume 259 (2015) no. 1, pp. 344-370 | Zbl
[22] A Calabi theorem for solutions to the parabolic Monge–Ampère equation with periodic data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 5, pp. 1143-1173 | DOI | Zbl
[23] An extension of Jörgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 3, 90, 36 pages | Zbl
Cité par Sources :