Théorie des groupes
An amenability-like property of finite energy path and loop groups
[Une propriété semblable à la moyennabilité des groupes de chemins et de lacets à énergie finie]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1139-1155.

Nous montrons que les groupes de lacets et de chemins à énergie finie (c.à.d. de classe H1 de Sobolev) à valeurs dans un groupe de Lie compact et connexe, ainsi que leurs extensions centrales, satisfont une version de la moyennabilité : ils admettent une moyenne invariante à gauche sur l’espace de fonctions bornées uniformément continues par rapport a une métrique invariante à gauche. Chaque représentation unitaire continue, π, d’un tel groupe (que nous disons d’être “moyennable en biais”) possède un état sur B(π) invariant sous conjugaison.

We show that the groups of finite energy loops and paths (that is, those of Sobolev class H1) with values in a compact connected Lie group, as well as their central extensions, satisfy an amenability-like property: they admit a left-invariant mean on the space of bounded functions uniformly continuous with regard to a left-invariant metric. Every strongly continuous unitary representation π of such a group (which we call skew-amenable) has a conjugation-invariant state on B(π).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.134
Pestov, Vladimir 1, 2

1 Departamento de Matemática, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CEP 88.040-900 Florianópolis-SC, Brasil
2 Département de mathématiques et de statistique, Université d’Ottawa, Complexe STEM, 150 Louis-Pasteur Pvt, Ottawa, Ontario K1N 6N5 Canada
@article{CRMATH_2020__358_11-12_1139_0,
     author = {Pestov, Vladimir},
     title = {An amenability-like property of finite energy path and loop groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1139--1155},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.134},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.134/}
}
TY  - JOUR
AU  - Pestov, Vladimir
TI  - An amenability-like property of finite energy path and loop groups
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1139
EP  - 1155
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.134/
DO  - 10.5802/crmath.134
LA  - en
ID  - CRMATH_2020__358_11-12_1139_0
ER  - 
%0 Journal Article
%A Pestov, Vladimir
%T An amenability-like property of finite energy path and loop groups
%J Comptes Rendus. Mathématique
%D 2020
%P 1139-1155
%V 358
%N 11-12
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.134/
%R 10.5802/crmath.134
%G en
%F CRMATH_2020__358_11-12_1139_0
Pestov, Vladimir. An amenability-like property of finite energy path and loop groups. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1139-1155. doi : 10.5802/crmath.134. https://www.numdam.org/articles/10.5802/crmath.134/

[1] Albeverio, Sergio; Høegh-Krohn, Raphael; Marion, Jean A.; Testard, Daniel H.; Torrésani, Bruno S. Noncommutative distributions. Unitary representation of gauge groups and algebras, Pure and Applied Mathematics, 175, Marcel Dekker, 1993 | Zbl

[2] Bekka, Mohammed E. B. Amenable unitary representations of locally compact groups, Invent. Math., Volume 100 (1990) no. 2, pp. 383-401 | DOI | MR | Zbl

[3] Bourbaki, Nicolas Topologie Générale I, Hermann, 1971

[4] Carderi, Alessandro; Thom, Andreas An exotic group as limit of finite special linear groups, Ann. Inst. Fourier, Volume 68 (2018) no. 1, pp. 257-273 | DOI | Numdam | MR | Zbl

[5] Carey, Alan; Grundling, Hendrik On the problem of the amenability of the gauge group, Lett. Math. Phys., Volume 68 (2004) no. 2, pp. 113-120 | DOI | MR | Zbl

[6] De Vries, Jan Elements of topological dynamics, Mathematics and its Applications, 257, Kluwer Academic Publishers, 1993 | MR | Zbl

[7] Dollard, John D.; Friedman, Charles N. Product integration with applications to differential equations, Encyclopedia of Mathematics and its Applications, 10, Addison-Wesley Publishing Group, 1979 | MR | Zbl

[8] Engelking, Ryszard General Topology, Monografie Matematyczne, 60, PWN - Polish Scientific Publishers, 1977 | Zbl

[9] Fremlin, David H. Measure theory. Vol. 2. Broad foundations, Torres Fremlin, 2003 (corrected second printing of the 2001 original) | Zbl

[10] Garrido, M. Isabel; Jaramillo, Jesús A. Lipschitz-type functions on metric spaces, J. Math. Anal. Appl., Volume 340 (2008) no. 1, pp. 282-290 | DOI | MR | Zbl

[11] Giordano, Thierry; Pestov, Vladimir Some extremely amenable groups related to operator algebras and ergodic theory, J. Inst. Math. Jussieu, Volume 6 (2007) no. 2, pp. 279-315 | DOI | MR | Zbl

[12] Greenleaf, Frederick P. Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., 1969 | MR | Zbl

[13] de la Harpe, Pierre Moyennabilité de quelques groupes topologiques de dimension infinie, C. R. Math. Acad. Sci. Paris, Volume 277 (1973), pp. 1037-1040 | Zbl

[14] de la Harpe, Pierre Moyennabilité du groupe unitaire et propriété P de Schwartz des algèbres de von Neumann, Algèbres d’opérateurs (Sém., Les Plains-sur-Bex, 1978) (Lecture Notes in Mathematics), Volume 725, Springer, 1979, pp. 220-227 | DOI | Zbl

[15] Ledoux, Michel The concentration of measure phenomenon, Mathematical Surveys and Monographs, 89, American Mathematical Society, 2001 | MR | Zbl

[16] Malliavin, Marie-Paule; Malliavin, Paul Integration on loop group III. Asymptotic Peter–Weyl orthogonality, J. Funct. Anal., Volume 108 (1992), pp. 13-46 | DOI | MR | Zbl

[17] Omori, Hideki Infinite-dimensional Lie groups, Translations of Mathematical Monographs, 158, American Mathematical Society, 1997 | MR | Zbl

[18] Palais, Richard S. Foundations of global non-linear analysis, Mathematics Lecture Note Series, W.A. Benjamin, Inc., 1968 | Zbl

[19] Pestov, Vladimir Dynamics of Infinite-Dimensional Groups: The Ramsey–Dvoretzky–Milman Phenomenon, University Lecture Series, 40, American Mathematical Society, 2006 | Zbl

[20] Samuel, Pierre Ultrafilters and compactification of uniform spaces, Trans. Am. Math. Soc., Volume 64 (1948), pp. 100-132 | DOI | MR | Zbl

[21] Schneider, Friedrich Martin; Thom, Andreas On Følner sets in topological groups, Compos. Math., Volume 154 (2018) no. 7, pp. 1333-1361 | DOI | Zbl

Cité par Sources :