Nous montrons que les groupes de lacets et de chemins à énergie finie (c.à.d. de classe de Sobolev) à valeurs dans un groupe de Lie compact et connexe, ainsi que leurs extensions centrales, satisfont une version de la moyennabilité : ils admettent une moyenne invariante à gauche sur l’espace de fonctions bornées uniformément continues par rapport a une métrique invariante à gauche. Chaque représentation unitaire continue, , d’un tel groupe (que nous disons d’être “moyennable en biais”) possède un état sur invariant sous conjugaison.
We show that the groups of finite energy loops and paths (that is, those of Sobolev class ) with values in a compact connected Lie group, as well as their central extensions, satisfy an amenability-like property: they admit a left-invariant mean on the space of bounded functions uniformly continuous with regard to a left-invariant metric. Every strongly continuous unitary representation of such a group (which we call skew-amenable) has a conjugation-invariant state on .
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_11-12_1139_0, author = {Pestov, Vladimir}, title = {An amenability-like property of finite energy path and loop groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {1139--1155}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {11-12}, year = {2020}, doi = {10.5802/crmath.134}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.134/} }
TY - JOUR AU - Pestov, Vladimir TI - An amenability-like property of finite energy path and loop groups JO - Comptes Rendus. Mathématique PY - 2020 SP - 1139 EP - 1155 VL - 358 IS - 11-12 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.134/ DO - 10.5802/crmath.134 LA - en ID - CRMATH_2020__358_11-12_1139_0 ER -
%0 Journal Article %A Pestov, Vladimir %T An amenability-like property of finite energy path and loop groups %J Comptes Rendus. Mathématique %D 2020 %P 1139-1155 %V 358 %N 11-12 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.134/ %R 10.5802/crmath.134 %G en %F CRMATH_2020__358_11-12_1139_0
Pestov, Vladimir. An amenability-like property of finite energy path and loop groups. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1139-1155. doi : 10.5802/crmath.134. http://www.numdam.org/articles/10.5802/crmath.134/
[1] Noncommutative distributions. Unitary representation of gauge groups and algebras, Pure and Applied Mathematics, 175, Marcel Dekker, 1993 | Zbl
[2] Amenable unitary representations of locally compact groups, Invent. Math., Volume 100 (1990) no. 2, pp. 383-401 | DOI | MR | Zbl
[3] Topologie Générale I, Hermann, 1971
[4] An exotic group as limit of finite special linear groups, Ann. Inst. Fourier, Volume 68 (2018) no. 1, pp. 257-273 | DOI | Numdam | MR | Zbl
[5] On the problem of the amenability of the gauge group, Lett. Math. Phys., Volume 68 (2004) no. 2, pp. 113-120 | DOI | MR | Zbl
[6] Elements of topological dynamics, Mathematics and its Applications, 257, Kluwer Academic Publishers, 1993 | MR | Zbl
[7] Product integration with applications to differential equations, Encyclopedia of Mathematics and its Applications, 10, Addison-Wesley Publishing Group, 1979 | MR | Zbl
[8] General Topology, Monografie Matematyczne, 60, PWN - Polish Scientific Publishers, 1977 | Zbl
[9] Measure theory. Vol. 2. Broad foundations, Torres Fremlin, 2003 (corrected second printing of the 2001 original) | Zbl
[10] Lipschitz-type functions on metric spaces, J. Math. Anal. Appl., Volume 340 (2008) no. 1, pp. 282-290 | DOI | MR | Zbl
[11] Some extremely amenable groups related to operator algebras and ergodic theory, J. Inst. Math. Jussieu, Volume 6 (2007) no. 2, pp. 279-315 | DOI | MR | Zbl
[12] Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., 1969 | MR | Zbl
[13] Moyennabilité de quelques groupes topologiques de dimension infinie, C. R. Math. Acad. Sci. Paris, Volume 277 (1973), pp. 1037-1040 | Zbl
[14] Moyennabilité du groupe unitaire et propriété de Schwartz des algèbres de von Neumann, Algèbres d’opérateurs (Sém., Les Plains-sur-Bex, 1978) (Lecture Notes in Mathematics), Volume 725, Springer, 1979, pp. 220-227 | DOI | Zbl
[15] The concentration of measure phenomenon, Mathematical Surveys and Monographs, 89, American Mathematical Society, 2001 | MR | Zbl
[16] Integration on loop group III. Asymptotic Peter–Weyl orthogonality, J. Funct. Anal., Volume 108 (1992), pp. 13-46 | DOI | MR | Zbl
[17] Infinite-dimensional Lie groups, Translations of Mathematical Monographs, 158, American Mathematical Society, 1997 | MR | Zbl
[18] Foundations of global non-linear analysis, Mathematics Lecture Note Series, W.A. Benjamin, Inc., 1968 | Zbl
[19] Dynamics of Infinite-Dimensional Groups: The Ramsey–Dvoretzky–Milman Phenomenon, University Lecture Series, 40, American Mathematical Society, 2006 | Zbl
[20] Ultrafilters and compactification of uniform spaces, Trans. Am. Math. Soc., Volume 64 (1948), pp. 100-132 | DOI | MR | Zbl
[21] On Følner sets in topological groups, Compos. Math., Volume 154 (2018) no. 7, pp. 1333-1361 | DOI | Zbl
Cité par Sources :