Dans cet article, à partir d’une formule connue, nous utilisons une idée simple pour obtenir une nouvelle représentation de la densité des variables aléatoires différentiables de Malliavin. Cette nouvelle représentation est particulièrement utile pour trouver des bornes inférieures de la densité.
In this paper, based on a known formula, we use a simple idea to get a new representation for the density of Malliavin differentiable random variables. This new representation is particularly useful for finding lower bounds for the density.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_1_79_0, author = {Nguyen, Tien Dung}, title = {Gaussian lower bounds for the density via {Malliavin} calculus}, journal = {Comptes Rendus. Math\'ematique}, pages = {79--87}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {1}, year = {2020}, doi = {10.5802/crmath.13}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.13/} }
TY - JOUR AU - Nguyen, Tien Dung TI - Gaussian lower bounds for the density via Malliavin calculus JO - Comptes Rendus. Mathématique PY - 2020 SP - 79 EP - 87 VL - 358 IS - 1 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.13/ DO - 10.5802/crmath.13 LA - en ID - CRMATH_2020__358_1_79_0 ER -
%0 Journal Article %A Nguyen, Tien Dung %T Gaussian lower bounds for the density via Malliavin calculus %J Comptes Rendus. Mathématique %D 2020 %P 79-87 %V 358 %N 1 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.13/ %R 10.5802/crmath.13 %G en %F CRMATH_2020__358_1_79_0
Nguyen, Tien Dung. Gaussian lower bounds for the density via Malliavin calculus. Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 79-87. doi : 10.5802/crmath.13. http://www.numdam.org/articles/10.5802/crmath.13/
[1] Gaussian-type lower bounds for the density of solutions of SDEs driven by fractional Brownian motions, Ann. Probab., Volume 44 (2016) no. 1, pp. 399-443 | DOI | MR | Zbl
[2] The density of solutions to multifractional stochastic Volterra integro-differential equations, Nonlinear Anal., Theory Methods Appl., Volume 130 (2016), pp. 176-189 | MR | Zbl
[3] Applications of the Malliavin calculus. III, J. Fac. Sci., Univ. Tokyo, Sect. I A (1987) no. 2, pp. 391-442 | MR | Zbl
[4] Density minoration of a strongly non-degenerated random variable, J. Funct. Anal., Volume 256 (2009) no. 12, pp. 4197-4214 | DOI | MR | Zbl
[5] Gaussian estimates for the solutions of some one-dimensional stochastic equations, Potential Anal., Volume 43 (2015) no. 2, pp. 289-311 | DOI | MR | Zbl
[6] Density formula and concentration inequalities with Malliavin calculus, Electron. J. Probab., Volume 14 (2009) no. 78, pp. 2287-2309 | DOI | MR | Zbl
[7] The Malliavin calculus and related topics, Probability and Its Applications, Springer, 2006 | Zbl
[8] Exponential divergence estimates and heat kernel tail, C. R. Math. Acad. Sci. Paris, Volume 338 (2004) no. 1, pp. 77-80 | DOI | MR | Zbl
[9] Integration with respect to fractal functions and stochastic calculus. I, Probab. Theory Relat. Fields, Volume 111 (1998) no. 3, pp. 333-374 | MR | Zbl
Cité par Sources :