Théorie des nombres
Abelian varieties with isogenous reductions
Comptes Rendus. Mathématique, Tome 358 (2020) no. 9-10, pp. 1085-1089.

Soient A 1 et A 2 deux variétés abéliennes sur un corps de nombres K. Nous montrons que, s’il existe un morphisme non trivial de variétés abéliennes entre réductions de A 1 et A 2 pour une proportion suffisamment grande d’idéaux premiers, il existe un morphisme non trivial A 1 A 2 sur K ¯. Nous donnons également une majoration du nombre du composantes d’un sous-groupe réductif de GL n dont l’intersection avec l’union des classes de conjugaison -rationnelles de GL n est dense pour la topologie de Zariski ; c’est une généralisation d’un théorème de Minkowski–Schur sur les représentations fidèles des groupes finis à caractère rationnel.

Let A 1 and A 2 be abelian varieties over a number field K. We prove that if there exists a non-trivial morphism of abelian varieties between reductions of A 1 and A 2 at a sufficiently high percentage of primes, then there exists a non-trivial morphism A 1 A 2 over K ¯. Along the way, we give an upper bound for the number of components of a reductive subgroup of GL n whose intersection with the union of -rational conjugacy classes of GL n is Zariski-dense. This can be regarded as a generalization of the Minkowski–Schur theorem on faithful representations of finite groups with rational characters.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.129
Khare, Chandrashekhar B. 1 ; Larsen, Michael 2

1 UCLA Department of Mathematics, Box 951555, Los Angeles, CA 90095, USA
2 Department of Mathematics, Indiana University, Bloomington, IN 47405, USA
@article{CRMATH_2020__358_9-10_1085_0,
     author = {Khare, Chandrashekhar B. and Larsen, Michael},
     title = {Abelian varieties with isogenous reductions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1085--1089},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {9-10},
     year = {2020},
     doi = {10.5802/crmath.129},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.129/}
}
TY  - JOUR
AU  - Khare, Chandrashekhar B.
AU  - Larsen, Michael
TI  - Abelian varieties with isogenous reductions
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1085
EP  - 1089
VL  - 358
IS  - 9-10
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.129/
DO  - 10.5802/crmath.129
LA  - en
ID  - CRMATH_2020__358_9-10_1085_0
ER  - 
%0 Journal Article
%A Khare, Chandrashekhar B.
%A Larsen, Michael
%T Abelian varieties with isogenous reductions
%J Comptes Rendus. Mathématique
%D 2020
%P 1085-1089
%V 358
%N 9-10
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.129/
%R 10.5802/crmath.129
%G en
%F CRMATH_2020__358_9-10_1085_0
Khare, Chandrashekhar B.; Larsen, Michael. Abelian varieties with isogenous reductions. Comptes Rendus. Mathématique, Tome 358 (2020) no. 9-10, pp. 1085-1089. doi : 10.5802/crmath.129. http://www.numdam.org/articles/10.5802/crmath.129/

[1] Borel, Armand Linear algebraic groups, Graduate Texts in Mathematics, 126, Springer, 1991 | MR | Zbl

[2] Collins, Michael J. On Jordan’s theorem for complex linear groups, J. Group Theory, Volume 10 (2007) no. 4, pp. 411-423 | MR | Zbl

[3] Faltings, Gerd Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983) no. 3, pp. 349-366 | DOI | Zbl

[4] Larsen, Michael; Pink, Richard A connectedness criterion for -adic Galois representations, Isr. J. Math., Volume 97 (1997), pp. 1-10 | DOI | MR | Zbl

[5] Pink, Richard -adic algebraic monodromy groups, cocharacters, and the Mumford–Tate conjecture, J. Reine Angew. Math., Volume 495 (1998), pp. 187-237 | DOI | MR | Zbl

[6] Prasad, Dipendra; Raghunathan, Ravi Relations between cusp forms sharing Hecke eigenvalues (2007) (https://arxiv.org/abs/2007.14639)

[7] Rajan, Conjeeveram S. On strong multiplicity one for -adic representations, Int. Math. Res. Not., Volume 1998 (1998) no. 3, pp. 161-172 | DOI | MR | Zbl

[8] Serre, Jean-Pierre Quelques applications du théorème de densité de Chebotarev, Publ. Math., Inst. Hautes Étud. Sci., Volume 54 (1981), pp. 323-401 | Numdam | Zbl

[9] Serre, Jean-Pierre Finite groups: an introduction, Surveys of Modern Mathematics, 10, Higher Education Press, 2016 (With assistance in translation provided by Garving K. Luli and Pin Yu.) | MR | Zbl

[10] Springer, Tonny Albert Reductive groups, Automorphic forms, representations and L-functions (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society, 1979, pp. 3-27 | DOI | MR | Zbl

[11] Tate, John Endomorphisms of abelian varieties over finite fields, Invent. Math., Volume 2 (1966), pp. 134-144 | DOI | MR | Zbl

Cité par Sources :