Théorie des nombres
Abelian varieties with isogenous reductions
Comptes Rendus. Mathématique, Tome 358 (2020) no. 9-10, pp. 1085-1089.

Soient A1 et A2 deux variétés abéliennes sur un corps de nombres K. Nous montrons que, s’il existe un morphisme non trivial de variétés abéliennes entre réductions de A1 et A2 pour une proportion suffisamment grande d’idéaux premiers, il existe un morphisme non trivial A1A2 sur K¯. Nous donnons également une majoration du nombre du composantes d’un sous-groupe réductif de GLn dont l’intersection avec l’union des classes de conjugaison -rationnelles de GLn est dense pour la topologie de Zariski ; c’est une généralisation d’un théorème de Minkowski–Schur sur les représentations fidèles des groupes finis à caractère rationnel.

Let A1 and A2 be abelian varieties over a number field K. We prove that if there exists a non-trivial morphism of abelian varieties between reductions of A1 and A2 at a sufficiently high percentage of primes, then there exists a non-trivial morphism A1A2 over K¯. Along the way, we give an upper bound for the number of components of a reductive subgroup of GLn whose intersection with the union of -rational conjugacy classes of GLn is Zariski-dense. This can be regarded as a generalization of the Minkowski–Schur theorem on faithful representations of finite groups with rational characters.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.129
Khare, Chandrashekhar B. 1 ; Larsen, Michael 2

1 UCLA Department of Mathematics, Box 951555, Los Angeles, CA 90095, USA
2 Department of Mathematics, Indiana University, Bloomington, IN 47405, USA
@article{CRMATH_2020__358_9-10_1085_0,
     author = {Khare, Chandrashekhar B. and Larsen, Michael},
     title = {Abelian varieties with isogenous reductions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1085--1089},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {9-10},
     year = {2020},
     doi = {10.5802/crmath.129},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.129/}
}
TY  - JOUR
AU  - Khare, Chandrashekhar B.
AU  - Larsen, Michael
TI  - Abelian varieties with isogenous reductions
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1085
EP  - 1089
VL  - 358
IS  - 9-10
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.129/
DO  - 10.5802/crmath.129
LA  - en
ID  - CRMATH_2020__358_9-10_1085_0
ER  - 
%0 Journal Article
%A Khare, Chandrashekhar B.
%A Larsen, Michael
%T Abelian varieties with isogenous reductions
%J Comptes Rendus. Mathématique
%D 2020
%P 1085-1089
%V 358
%N 9-10
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.129/
%R 10.5802/crmath.129
%G en
%F CRMATH_2020__358_9-10_1085_0
Khare, Chandrashekhar B.; Larsen, Michael. Abelian varieties with isogenous reductions. Comptes Rendus. Mathématique, Tome 358 (2020) no. 9-10, pp. 1085-1089. doi : 10.5802/crmath.129. https://www.numdam.org/articles/10.5802/crmath.129/

[1] Borel, Armand Linear algebraic groups, Graduate Texts in Mathematics, 126, Springer, 1991 | MR | Zbl

[2] Collins, Michael J. On Jordan’s theorem for complex linear groups, J. Group Theory, Volume 10 (2007) no. 4, pp. 411-423 | MR | Zbl

[3] Faltings, Gerd Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983) no. 3, pp. 349-366 | DOI | Zbl

[4] Larsen, Michael; Pink, Richard A connectedness criterion for -adic Galois representations, Isr. J. Math., Volume 97 (1997), pp. 1-10 | DOI | MR | Zbl

[5] Pink, Richard -adic algebraic monodromy groups, cocharacters, and the Mumford–Tate conjecture, J. Reine Angew. Math., Volume 495 (1998), pp. 187-237 | DOI | MR | Zbl

[6] Prasad, Dipendra; Raghunathan, Ravi Relations between cusp forms sharing Hecke eigenvalues (2007) (https://arxiv.org/abs/2007.14639)

[7] Rajan, Conjeeveram S. On strong multiplicity one for -adic representations, Int. Math. Res. Not., Volume 1998 (1998) no. 3, pp. 161-172 | DOI | MR | Zbl

[8] Serre, Jean-Pierre Quelques applications du théorème de densité de Chebotarev, Publ. Math., Inst. Hautes Étud. Sci., Volume 54 (1981), pp. 323-401 | Numdam | Zbl

[9] Serre, Jean-Pierre Finite groups: an introduction, Surveys of Modern Mathematics, 10, Higher Education Press, 2016 (With assistance in translation provided by Garving K. Luli and Pin Yu.) | MR | Zbl

[10] Springer, Tonny Albert Reductive groups, Automorphic forms, representations and L-functions (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society, 1979, pp. 3-27 | DOI | MR | Zbl

[11] Tate, John Endomorphisms of abelian varieties over finite fields, Invent. Math., Volume 2 (1966), pp. 134-144 | DOI | MR | Zbl

Cité par Sources :