Géométrie algébrique, Géométrie différentielle
On the Morse–Novikov Cohomology of blowing up complex manifolds
[Sur la cohomologie de Morse-Novikov des éclatements de variétés complexes]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 67-77.

Inspiré par les récents travaux de S. Rao, S. Yang, X.-D. Yang et L. Meng sur les formules donnant le comportement des groupes de cohomologie de de Rham et Morse-Novikov dans les éclatements, nous donnons une nouvelle preuve simple de la formule pour la cohomologie de Morse-Novikov en introduisant le groupe de cohomologie de Morse-Novikov relatif via la cohomologie des faisceaux et en explicitant l’isomorphisme de la formule.

Inspired by the recent works of S. Rao–S. Yang–X.-D. Yang and L. Meng on the blow-up formulae for de Rham and Morse–Novikov cohomology groups, we give a new simple proof of the blow-up formula for Morse–Novikov cohomology by introducing the relative Morse–Novikov cohomology group via sheaf cohomology theory and presenting the explicit isomorphism therein.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.12
Zou, Yongpan 1

1 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China
@article{CRMATH_2020__358_1_67_0,
     author = {Zou, Yongpan},
     title = {On the {Morse{\textendash}Novikov} {Cohomology} of blowing up complex manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {67--77},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {1},
     year = {2020},
     doi = {10.5802/crmath.12},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.12/}
}
TY  - JOUR
AU  - Zou, Yongpan
TI  - On the Morse–Novikov Cohomology of blowing up complex manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 67
EP  - 77
VL  - 358
IS  - 1
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.12/
DO  - 10.5802/crmath.12
LA  - en
ID  - CRMATH_2020__358_1_67_0
ER  - 
%0 Journal Article
%A Zou, Yongpan
%T On the Morse–Novikov Cohomology of blowing up complex manifolds
%J Comptes Rendus. Mathématique
%D 2020
%P 67-77
%V 358
%N 1
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.12/
%R 10.5802/crmath.12
%G en
%F CRMATH_2020__358_1_67_0
Zou, Yongpan. On the Morse–Novikov Cohomology of blowing up complex manifolds. Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 67-77. doi : 10.5802/crmath.12. http://www.numdam.org/articles/10.5802/crmath.12/

[1] Angella, Daniele; Kasuya, Hisashi Hodge theory for twisted differentials, Complex Manifolds, Volume 1 (2014), pp. 64-85 | MR | Zbl

[2] Belgun, Florin A. On the metric structure of non-Kähler complex surfaces, Math. Ann., Volume 317 (2000) no. 1, pp. 1-40 | DOI | MR | Zbl

[3] Bredon, Glen E. Sheaf theory, Graduate Texts in Mathematics, 170, Springer, 1997 | MR | Zbl

[4] Guedira, Fouzia; Lichnerowicz, André Géométrie des algèbres de Lie locales de Kirillov, J. Math. Pures Appl., IX. Sér., Volume 63 (1984) no. 4, pp. 407-484 | Zbl

[5] Iversen, Birger Cohomology of sheaves, Universitext, Springer, 1986 | Zbl

[6] Lee, John M. Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, Springer, 2013 | MR | Zbl

[7] Lichnerowicz, André Les variétés de Poisson et leurs algébres de Lie associées, J. Differ. Geom., Volume 12 (1977), pp. 253-300 | DOI | Zbl

[8] Meng, Lingxu Morse-Novikov cohomology for blow-ups of complex manifolds, (2018) (https://arxiv.org/abs/1806.06622v3)

[9] Meng, Lingxu Mayer–Vietoris systems and their applications (2019) (https://arxiv.org/abs/1811.10500v3)

[10] Novikov, S. P. The Hamiltonian formalism and a multivalued analogue of Morse theory (Russian), Usp. Mat. Nauk, Volume 37 (1982) no. 5, pp. 3-43 | Zbl

[11] Ornea, Liviu; Vuletescu, Victor; Verbitsky, Misha Classification of non-Kähler surfaces and locally conformally Kähler geometry (2018) (https://arxiv.org/abs/1810.05768v2)

[12] Rao, Sheng; Yang, Song; Yang, Xiangdong Dolbeault cohomologies of blowing up complex manifolds, J. Math. Pures Appl., Volume 130 (2019), pp. 68-92 | MR | Zbl

[13] Rao, Sheng; Yang, Song; Yang, Xiangdong Dolbeault cohomologies of blowing up complex manifolds II: bundle-valued case, J. Math. Pures Appl., Volume 130 (2020), pp. 1-38 | DOI | MR | Zbl

[14] Rao, Sheng; Yang, Song; Yang, Xiangdong; Yu, Xun Hodge cohomology on blow-ups along subvarieties (2019) (https://arxiv.org/abs/1907.13281)

[15] Voisin, Claire Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, 2002 (translated from the French original by Leila Schneps) | MR | Zbl

[16] Wells, R. O. jun. Comparison of de Rham and Dolbeault cohomology for proper surjective mappings, Pac. J. Math., Volume 53 (1974), pp. 281-300 | DOI | MR | Zbl

[17] Yang, Xiangdong; Zhao, Guosong A note on the Morse-Novikov cohomology of blow-ups of locally conformal Kähler manifolds, Bull. Aust. Math. Soc., Volume 91 (2015) no. 1, pp. 155-166 | DOI | Zbl

[18] Zou, Yongpan Morse–Novikov cohomology of blowing up complex manifolds and deformation of CR structure, Masters thesis, Wuhan University (2019)

Cité par Sources :