With the aid of the monotone L’Hôpital rule, the authors verify monotonicity of some functions involving complete -elliptic integrals of the first kind and the inverse of generalized hyperbolic tangent function, derive several sharp inequalities of complete -elliptic integrals of the first kind, and generalize some known sharp approximation of complete elliptic integrals of the first kind.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_8_961_0, author = {Wang, Fei and Qi, Feng}, title = {Monotonicity and sharp inequalities related to complete $(p,q)$-elliptic integrals of the first kind}, journal = {Comptes Rendus. Math\'ematique}, pages = {961--970}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {8}, year = {2020}, doi = {10.5802/crmath.119}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.119/} }
TY - JOUR AU - Wang, Fei AU - Qi, Feng TI - Monotonicity and sharp inequalities related to complete $(p,q)$-elliptic integrals of the first kind JO - Comptes Rendus. Mathématique PY - 2020 SP - 961 EP - 970 VL - 358 IS - 8 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.119/ DO - 10.5802/crmath.119 LA - en ID - CRMATH_2020__358_8_961_0 ER -
%0 Journal Article %A Wang, Fei %A Qi, Feng %T Monotonicity and sharp inequalities related to complete $(p,q)$-elliptic integrals of the first kind %J Comptes Rendus. Mathématique %D 2020 %P 961-970 %V 358 %N 8 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.119/ %R 10.5802/crmath.119 %G en %F CRMATH_2020__358_8_961_0
Wang, Fei; Qi, Feng. Monotonicity and sharp inequalities related to complete $(p,q)$-elliptic integrals of the first kind. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 961-970. doi : 10.5802/crmath.119. http://www.numdam.org/articles/10.5802/crmath.119/
[1] Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math., Volume 172 (2004) no. 2, pp. 289-312 | DOI | MR | Zbl
[2] Functional inequalities for complete elliptic integrals and their ratios, SIAM J. Math. Anal., Volume 21 (1990) no. 2, pp. 536-549 | DOI | MR
[3] Functional inequalities for hypergeometric functions and complete elliptic integrals, SIAM J. Math. Anal., Volume 23 (1992) no. 2, pp. 512-524 | DOI | MR
[4] Conformal Invariants, Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, 1997 | Zbl
[5] On a function involving generalized complete (, )-elliptic integrals, Arab. J. Math., Volume 9 (2020) no. 1, pp. 73-82 | DOI | MR | Zbl
[6] Improvements of the bounds for Ramanujan constant function, J. Inequal. Appl., Volume 2016 (2016), 196, 9 pages | DOI | MR | Zbl
[7] Some bounds for the complete elliptic integrals of the first and second kind, Math. Inequal. Appl., Volume 14 (2011) no. 2, pp. 323-334 | DOI | MR | Zbl
[8] Bounds for the perimeter of an ellipse in terms of power means, J. Math. Inequal., Volume 14 (2020) no. 3, pp. 887-899 | DOI | MR
[9] Monotonicity properties and bounds for the complete -elliptic integrals, J. Inequal. Appl., Volume 2018 (2018), 239, 11 pages | DOI | MR
[10] Convexity of the generalized sine function and the generalized hyperbolic sine function, J. Approx. Theory, Volume 174 (2013), pp. 1-9 | DOI | MR | Zbl
[11] Monotonicity and convexity properties of the generalized elliptic integrals, J. Zhejiang Sci-Tech Univ., Volume 39 (2018) no. 6, pp. 765-769
[12] Complete -complete elliptic integrals with application to a family of means, J. Class. Anal., Volume 10 (2017) no. 1, pp. 15-25 | DOI | MR | Zbl
[13] Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities, Filomat, Volume 27 (2013) no. 4, pp. 601-604 | DOI | MR | Zbl
[14] Sums of infinite power series whose coefficients involve products of the Catalan–Qi numbers, Montes Taurus J. Pure Appl. Math., Volume 1 (2019) no. 2, pp. 1-12
[15] Inequalities of the complete elliptic integrals, Tamkang J. Math., Volume 29 (1998) no. 3, pp. 165-169 | MR | Zbl
[16] Refinements, generalizations, and applications of Jordan’s inequality and related problems, J. Inequal. Appl., Volume 2009 (2009), 271923, 52 pages | DOI | MR | Zbl
[17] Closed formulas and identities for the Bell polynomials and falling factorials, Contrib. Discrete Math., Volume 15 (2020) no. 1, pp. 163-174 | DOI | MR | Zbl
[18] Some inequalities of Čebyšev type for conformable -fractional integral operators, Symmetry, Volume 10 (2018) no. 11, 614, 8 pages | DOI | Zbl
[19] Approximation for the complete elliptic integral of the first kind, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 114 (2020) no. 2, 57, 12 pages | DOI | MR | Zbl
[20] Elliptic integrals and the modulus of Grötzsch ring, PanAmer. Math. J., Volume 5 (1995) no. 2, pp. 41-60 | Zbl
[21] A note on generalized trigonometric and hyperbolic functions, J. Math. Inequal., Volume 8 (2014) no. 3, pp. 635-642 | DOI | MR | Zbl
[22] A new form of the generalized complete elliptic integrals, Kodai Math. J., Volume 39 (2016) no. 1, pp. 202-226 | DOI | MR | Zbl
[23] Special Functions: An Introduction to Classical Functions of Mathematical Physics, John Wiley & Sons, 1996 | DOI | Zbl
[24] Monotonicity and inequalities related to complete elliptic integrals of the second kind, AIMS Math., Volume 5 (2020) no. 3, pp. 2732-2742 | DOI | MR
[25] Monotonicity properties and inequalities related to generalized Grötzsch ring functions, Open Math., Volume 17 (2019), pp. 802-812 | DOI | Zbl
[26] Precise bounds for the weighted Hölder mean of the complete -elliptic integrals, J. Math. Anal. Appl., Volume 480 (2019) no. 2, 12388, 9 pages | DOI | Zbl
[27] Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Methods Funct. Theory, Volume 20 (2020) no. 1, pp. 111-124 | DOI | MR | Zbl
[28] Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., Volume 14 (2020) no. 1, pp. 1-21 | DOI | MR | Zbl
[29] Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., Volume 39 (2019) no. 5, pp. 1440-1450 | DOI | MR
[30] A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., Volume 20 (2017) no. 3, pp. 729-735 | DOI | MR | Zbl
[31] Monotonicity properties and bounds involving the complete elliptic integrals of the first kind, Math. Inequal. Appl., Volume 21 (2018) no. 4, pp. 1185-1199 | DOI | MR | Zbl
[32] On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl., Volume 462 (2018) no. 2, pp. 1714-1726 | DOI | MR | Zbl
[33] Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., Volume 23 (2020) no. 1, pp. 77-93 | DOI | MR | Zbl
[34] Monotonicity, convexity and inequalities related to complete -elliptic integrals and generalized trigonometric functions, Publ. Math., Volume 97 (2020) no. 1-2, pp. 181-199 | MR
[35] Some inequalities for complete elliptic integrals, Appl. Math. E-Notes, Volume 14 (2014), pp. 193-199 | MR | Zbl
[36] Monotonicity and functional inequalities for the complete -elliptic integrals, J. Math. Anal. Appl., Volume 453 (2017) no. 2, pp. 942-953 | DOI | MR
Cité par Sources :