Théorie des nombres
Monotonicity and sharp inequalities related to complete (p,q)-elliptic integrals of the first kind
Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 961-970.

With the aid of the monotone L’Hôpital rule, the authors verify monotonicity of some functions involving complete (p,q)-elliptic integrals of the first kind and the inverse of generalized hyperbolic tangent function, derive several sharp inequalities of complete (p,q)-elliptic integrals of the first kind, and generalize some known sharp approximation of complete elliptic integrals of the first kind.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.119
Classification : 33E05, 33C75
Wang, Fei 1 ; Qi, Feng 2, 3, 4

1 Department of Mathematics, Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou 310053, Zhejiang, China
2 Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, Henan, China
3 School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China
4 College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043, Inner Mongolia, China
@article{CRMATH_2020__358_8_961_0,
     author = {Wang, Fei and Qi, Feng},
     title = {Monotonicity and sharp inequalities related to complete $(p,q)$-elliptic integrals of the first kind},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {961--970},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {8},
     year = {2020},
     doi = {10.5802/crmath.119},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.119/}
}
TY  - JOUR
AU  - Wang, Fei
AU  - Qi, Feng
TI  - Monotonicity and sharp inequalities related to complete $(p,q)$-elliptic integrals of the first kind
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 961
EP  - 970
VL  - 358
IS  - 8
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.119/
DO  - 10.5802/crmath.119
LA  - en
ID  - CRMATH_2020__358_8_961_0
ER  - 
%0 Journal Article
%A Wang, Fei
%A Qi, Feng
%T Monotonicity and sharp inequalities related to complete $(p,q)$-elliptic integrals of the first kind
%J Comptes Rendus. Mathématique
%D 2020
%P 961-970
%V 358
%N 8
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.119/
%R 10.5802/crmath.119
%G en
%F CRMATH_2020__358_8_961_0
Wang, Fei; Qi, Feng. Monotonicity and sharp inequalities related to complete $(p,q)$-elliptic integrals of the first kind. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 961-970. doi : 10.5802/crmath.119. http://www.numdam.org/articles/10.5802/crmath.119/

[1] Alzer, Horst; Qiu, Song-Liang Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math., Volume 172 (2004) no. 2, pp. 289-312 | DOI | MR | Zbl

[2] Anderson, Glen Douglas; Vamanamurthy, Mavina K.; Vuorinen, Matti Functional inequalities for complete elliptic integrals and their ratios, SIAM J. Math. Anal., Volume 21 (1990) no. 2, pp. 536-549 | DOI | MR

[3] Anderson, Glen Douglas; Vamanamurthy, Mavina K.; Vuorinen, Matti Functional inequalities for hypergeometric functions and complete elliptic integrals, SIAM J. Math. Anal., Volume 23 (1992) no. 2, pp. 512-524 | DOI | MR

[4] Anderson, Glen Douglas; Vamanamurthy, Mavina K.; Vuorinen, Matti Conformal Invariants, Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, 1997 | Zbl

[5] Bhayo, Barkat Ali; Yin, Li On a function involving generalized complete (p, q)-elliptic integrals, Arab. J. Math., Volume 9 (2020) no. 1, pp. 73-82 | DOI | MR | Zbl

[6] Chu, Hong-Hu; Yang, Zhen-Hang; Zhang, Wen; Chu, Yu-Ming Improvements of the bounds for Ramanujan constant function, J. Inequal. Appl., Volume 2016 (2016), 196, 9 pages | DOI | MR | Zbl

[7] Guo, Bai-Ni; Qi, Feng Some bounds for the complete elliptic integrals of the first and second kind, Math. Inequal. Appl., Volume 14 (2011) no. 2, pp. 323-334 | DOI | MR | Zbl

[8] He, Zai-Yin; Wang, Miao-Kun; Jiang, Yue-Ping; Chu, Yu-Ming Bounds for the perimeter of an ellipse in terms of power means, J. Math. Inequal., Volume 14 (2020) no. 3, pp. 887-899 | DOI | MR

[9] Huang, Ti-Ren; Tan, Shen-Yang; Ma, Xiao-Yan; Chu, Yu-Ming Monotonicity properties and bounds for the complete p-elliptic integrals, J. Inequal. Appl., Volume 2018 (2018), 239, 11 pages | DOI | MR

[10] Jiang, Wei-Dong; Wang, Miao-Kun; Chu, Yu-Ming; Jiang, Yue-Ping; Qi, Feng Convexity of the generalized sine function and the generalized hyperbolic sine function, J. Approx. Theory, Volume 174 (2013), pp. 1-9 | DOI | MR | Zbl

[11] Jiao, Ren Bing; Qiu, Song Liang; Ge, Geng Tao Monotonicity and convexity properties of the generalized (p,q)- elliptic integrals, J. Zhejiang Sci-Tech Univ., Volume 39 (2018) no. 6, pp. 765-769

[12] Kamiya, Toshiki; Takeuchi, Shingo Complete (p,q)-complete elliptic integrals with application to a family of means, J. Class. Anal., Volume 10 (2017) no. 1, pp. 15-25 | DOI | MR | Zbl

[13] Qi, Feng Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities, Filomat, Volume 27 (2013) no. 4, pp. 601-604 | DOI | MR | Zbl

[14] Qi, Feng; Guo, Bai-Ni Sums of infinite power series whose coefficients involve products of the Catalan–Qi numbers, Montes Taurus J. Pure Appl. Math., Volume 1 (2019) no. 2, pp. 1-12

[15] Qi, Feng; Huang, Zheng Inequalities of the complete elliptic integrals, Tamkang J. Math., Volume 29 (1998) no. 3, pp. 165-169 | MR | Zbl

[16] Qi, Feng; Niu, Da-Wei; Guo, Bai-Ni Refinements, generalizations, and applications of Jordan’s inequality and related problems, J. Inequal. Appl., Volume 2009 (2009), 271923, 52 pages | DOI | MR | Zbl

[17] Qi, Feng; Niu, Da-Wei; Lim, Dongkyu; Guo, Bai-Ni Closed formulas and identities for the Bell polynomials and falling factorials, Contrib. Discrete Math., Volume 15 (2020) no. 1, pp. 163-174 | DOI | MR | Zbl

[18] Qi, Feng; Rahman, Gauhar; Hussain, Sardar M.; Du, Wei-Shih; Nisar, Kottakkaran S. Some inequalities of Čebyšev type for conformable k-fractional integral operators, Symmetry, Volume 10 (2018) no. 11, 614, 8 pages | DOI | Zbl

[19] Qian, Wei-Mao; He, Zai-Yin; Chu, Yu-Ming Approximation for the complete elliptic integral of the first kind, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 114 (2020) no. 2, 57, 12 pages | DOI | MR | Zbl

[20] Qiu, Song Liang; Vamanamurthy, Mavina K. Elliptic integrals and the modulus of Grötzsch ring, PanAmer. Math. J., Volume 5 (1995) no. 2, pp. 41-60 | Zbl

[21] Song, Ying-Qing; Chu, Yu-Ming; Liu, Bao-Yu; Wang, Miao-Kun A note on generalized trigonometric and hyperbolic functions, J. Math. Inequal., Volume 8 (2014) no. 3, pp. 635-642 | DOI | MR | Zbl

[22] Takeuchi, Shingo A new form of the generalized complete elliptic integrals, Kodai Math. J., Volume 39 (2016) no. 1, pp. 202-226 | DOI | MR | Zbl

[23] Temme, Nico M. Special Functions: An Introduction to Classical Functions of Mathematical Physics, John Wiley & Sons, 1996 | DOI | Zbl

[24] Wang, Fei; Guo, Bai-Ni; Qi, Feng Monotonicity and inequalities related to complete elliptic integrals of the second kind, AIMS Math., Volume 5 (2020) no. 3, pp. 2732-2742 | DOI | MR

[25] Wang, Fei; He, Jian-Hui; Yin, Li; Qi, Feng Monotonicity properties and inequalities related to generalized Grötzsch ring functions, Open Math., Volume 17 (2019), pp. 802-812 | DOI | Zbl

[26] Wang, Miao-Kun; Chu, Hong-Hu; Chu, Yu-Ming Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., Volume 480 (2019) no. 2, 12388, 9 pages | DOI | Zbl

[27] Wang, Miao-Kun; He, Zai-Yin; Chu, Yu-Ming Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Methods Funct. Theory, Volume 20 (2020) no. 1, pp. 111-124 | DOI | MR | Zbl

[28] Wang, Miao-Kun; Hong, Miao-Ying; Xu, Yang-Fan; Shen, Zhong-Hua; Chu, Yu-Ming Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., Volume 14 (2020) no. 1, pp. 1-21 | DOI | MR | Zbl

[29] Wang, Miao-Kun; Zhang, Wen; Chu, Yu-Ming Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., Volume 39 (2019) no. 5, pp. 1440-1450 | DOI | MR

[30] Yang, Zhen-Hang; Chu, Yu-Ming A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., Volume 20 (2017) no. 3, pp. 729-735 | DOI | MR | Zbl

[31] Yang, Zhen-Hang; Qian, Wei-Mao; Chu, Yu-Ming Monotonicity properties and bounds involving the complete elliptic integrals of the first kind, Math. Inequal. Appl., Volume 21 (2018) no. 4, pp. 1185-1199 | DOI | MR | Zbl

[32] Yang, Zhen-Hang; Qian, Wei-Mao; Chu, Yu-Ming; Zhang, Wen On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl., Volume 462 (2018) no. 2, pp. 1714-1726 | DOI | MR | Zbl

[33] Yang, Zhen-Hang; Qian, Wei-Mao; Zhang, Wen; Chu, Yu-Ming Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., Volume 23 (2020) no. 1, pp. 77-93 | DOI | MR | Zbl

[34] Yin, Li; Lin, Xiu-Li; Qi, Feng Monotonicity, convexity and inequalities related to complete (p,q,r)-elliptic integrals and generalized trigonometric functions, Publ. Math., Volume 97 (2020) no. 1-2, pp. 181-199 | MR

[35] Yin, Li; Qi, Feng Some inequalities for complete elliptic integrals, Appl. Math. E-Notes, Volume 14 (2014), pp. 193-199 | MR | Zbl

[36] Zhang, Xiao-Hui Monotonicity and functional inequalities for the complete p-elliptic integrals, J. Math. Anal. Appl., Volume 453 (2017) no. 2, pp. 942-953 | DOI | MR

Cité par Sources :