We give the cumulative distribution function of , the maximum of a sequence of observations from an ARMA(1, 1) process. Solutions are first given in terms of repeated integrals and then for the case, where the underlying random variables are absolutely continuous. The distribution of is then given as a weighted sum of the th powers of the eigenvalues of a non-symmetric Fredholm kernel. The weights are given in terms of the left and right eigenfunctions of the kernel.
These results are large deviations expansions for estimates, since the maximum need not be standardized to have a limit. In fact, such a limit need not exist.
Accepté le :
Publié le :
@article{CRMATH_2020__358_8_909_0, author = {Withers, Christopher S. and Nadarajah, Saralees}, title = {The distribution of the maximum of an {ARMA(1,} 1) process}, journal = {Comptes Rendus. Math\'ematique}, pages = {909--916}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {8}, year = {2020}, doi = {10.5802/crmath.111}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.111/} }
TY - JOUR AU - Withers, Christopher S. AU - Nadarajah, Saralees TI - The distribution of the maximum of an ARMA(1, 1) process JO - Comptes Rendus. Mathématique PY - 2020 SP - 909 EP - 916 VL - 358 IS - 8 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.111/ DO - 10.5802/crmath.111 LA - en ID - CRMATH_2020__358_8_909_0 ER -
%0 Journal Article %A Withers, Christopher S. %A Nadarajah, Saralees %T The distribution of the maximum of an ARMA(1, 1) process %J Comptes Rendus. Mathématique %D 2020 %P 909-916 %V 358 %N 8 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.111/ %R 10.5802/crmath.111 %G en %F CRMATH_2020__358_8_909_0
Withers, Christopher S.; Nadarajah, Saralees. The distribution of the maximum of an ARMA(1, 1) process. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 909-916. doi : 10.5802/crmath.111. http://www.numdam.org/articles/10.5802/crmath.111/
[1] Handbook of Mathematical Functions (Abramowitz, Milton; Stegun, Irene A., eds.), Applied Mathematics Series, 55, U.S. Department of Commerce, National Bureau of Standards, 1964 | Zbl
[2] The rate of convergence of extremes of stationary normal sequences, Adv. Appl. Probab., Volume 15 (1983), pp. 54-80 | DOI | MR | Zbl
[3] Extreme value theory for moving average processes, Ann. Probab., Volume 14 (1986), pp. 612-652 | DOI | MR | Zbl
[4] The distribution of the maximum of a first order autoregressive process: The continuous case, Metrika, Volume 74 (2011) no. 2, pp. 247-266 | DOI | MR | Zbl
[5] The distribution of the maximum of a first order moving average: The continuous case, Extremes, Volume 17 (2014) no. 1, pp. 1-24 | DOI | MR | Zbl
[6] The distribution of the maximum of a second order autoregressive process: The continuous case, 2020 (Technical Report, Department of Mathematics, University of Manchester, UK)
Cité par Sources :