Probabilités
The distribution of the maximum of an ARMA(1, 1) process
Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 909-916.

We give the cumulative distribution function of M n =maxX 1 ,...,X n , the maximum of a sequence of n observations from an ARMA(1, 1) process. Solutions are first given in terms of repeated integrals and then for the case, where the underlying random variables are absolutely continuous. The distribution of M n is then given as a weighted sum of the nth powers of the eigenvalues of a non-symmetric Fredholm kernel. The weights are given in terms of the left and right eigenfunctions of the kernel.

These results are large deviations expansions for estimates, since the maximum need not be standardized to have a limit. In fact, such a limit need not exist.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.111
Withers, Christopher S. 1 ; Nadarajah, Saralees 2

1 Callaghan Innovation, Lower Hutt, New Zealand
2 University of Manchester, Manchester M13 9PL, UK
@article{CRMATH_2020__358_8_909_0,
     author = {Withers, Christopher S. and Nadarajah, Saralees},
     title = {The distribution of the maximum of an {ARMA(1,} 1) process},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {909--916},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {8},
     year = {2020},
     doi = {10.5802/crmath.111},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.111/}
}
TY  - JOUR
AU  - Withers, Christopher S.
AU  - Nadarajah, Saralees
TI  - The distribution of the maximum of an ARMA(1, 1) process
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 909
EP  - 916
VL  - 358
IS  - 8
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.111/
DO  - 10.5802/crmath.111
LA  - en
ID  - CRMATH_2020__358_8_909_0
ER  - 
%0 Journal Article
%A Withers, Christopher S.
%A Nadarajah, Saralees
%T The distribution of the maximum of an ARMA(1, 1) process
%J Comptes Rendus. Mathématique
%D 2020
%P 909-916
%V 358
%N 8
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.111/
%R 10.5802/crmath.111
%G en
%F CRMATH_2020__358_8_909_0
Withers, Christopher S.; Nadarajah, Saralees. The distribution of the maximum of an ARMA(1, 1) process. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 909-916. doi : 10.5802/crmath.111. http://www.numdam.org/articles/10.5802/crmath.111/

[1] Handbook of Mathematical Functions (Abramowitz, Milton; Stegun, Irene A., eds.), Applied Mathematics Series, 55, U.S. Department of Commerce, National Bureau of Standards, 1964 | Zbl

[2] Rootzén, Holger The rate of convergence of extremes of stationary normal sequences, Adv. Appl. Probab., Volume 15 (1983), pp. 54-80 | DOI | MR | Zbl

[3] Rootzén, Holger Extreme value theory for moving average processes, Ann. Probab., Volume 14 (1986), pp. 612-652 | DOI | MR | Zbl

[4] Withers, Christopher S.; Nadarajah, Saralees The distribution of the maximum of a first order autoregressive process: The continuous case, Metrika, Volume 74 (2011) no. 2, pp. 247-266 | DOI | MR | Zbl

[5] Withers, Christopher S.; Nadarajah, Saralees The distribution of the maximum of a first order moving average: The continuous case, Extremes, Volume 17 (2014) no. 1, pp. 1-24 | DOI | MR | Zbl

[6] Withers, Christopher S.; Nadarajah, Saralees The distribution of the maximum of a second order autoregressive process: The continuous case, 2020 (Technical Report, Department of Mathematics, University of Manchester, UK)

Cité par Sources :