This Note and its extended version [7] present a novel backward Itô–Ventzell formula and an extension of the Aleeksev–Gröbner interpolating formula to stochastic flows. We also present some natural spectral conditions that yield direct and simple proofs of time uniform estimates of the difference between the two stochastic flows when their drift and diffusion functions are not the same.
Accepté le :
Publié le :
@article{CRMATH_2020__358_7_881_0, author = {Del Moral, Pierre and Singh, Sumeetpal S.}, title = {A backward {It\^o{\textendash}Ventzell} formula with an application to stochastic interpolation}, journal = {Comptes Rendus. Math\'ematique}, pages = {881--886}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {7}, year = {2020}, doi = {10.5802/crmath.110}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.110/} }
TY - JOUR AU - Del Moral, Pierre AU - Singh, Sumeetpal S. TI - A backward Itô–Ventzell formula with an application to stochastic interpolation JO - Comptes Rendus. Mathématique PY - 2020 SP - 881 EP - 886 VL - 358 IS - 7 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.110/ DO - 10.5802/crmath.110 LA - en ID - CRMATH_2020__358_7_881_0 ER -
%0 Journal Article %A Del Moral, Pierre %A Singh, Sumeetpal S. %T A backward Itô–Ventzell formula with an application to stochastic interpolation %J Comptes Rendus. Mathématique %D 2020 %P 881-886 %V 358 %N 7 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.110/ %R 10.5802/crmath.110 %G en %F CRMATH_2020__358_7_881_0
Del Moral, Pierre; Singh, Sumeetpal S. A backward Itô–Ventzell formula with an application to stochastic interpolation. Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 881-886. doi : 10.5802/crmath.110. http://www.numdam.org/articles/10.5802/crmath.110/
[1] An estimate for the perturbations of the solution of ordinary differential equations, Vestn. Mosk. Univ. (1961) no. 2, pp. 28-36 | MR
[2] A duality formula and a particle Gibbs sampler for continuous time Feynman–Kac measures on path spaces (2018) (https://arxiv.org/abs/1805.05044)
[3] A variational approach to nonlinear and interacting diffusions, Stochastic Anal. Appl., Volume 37 (2019) no. 5, pp. 717-748 | DOI | MR | Zbl
[4] A second order analysis of McKean–Vlasov semigroups, 2020 (To appear in The Annals of Applied Probability)
[5] A perturbation analysis of stochastic matrix Riccati diffusions, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 56 (2020) no. 2, pp. 884-916 | DOI | MR | Zbl
[6] Some remarks about backward Itô formula and applications, Stochastic Anal. Appl., Volume 16 (1998) no. 6, pp. 993-1003 | Zbl
[7] Backward Itô–Ventzell and stochastic interpolation formulae (2019) (https://hal.archives-ouvertes.fr/hal-02161914v4)
[8] The Malliavin calculus and related topics, Probability and Its Applications, 1995, Springer, 2006 | Zbl
[9] A generalized Itô–Ventzell formula. Application to a class of anticipating stochastic differential equations, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 25 (1989) no. 1, pp. 39-71 | Numdam | Zbl
[10] A two-sided stochastic integral and its calculus, Probab. Theory Relat. Fields, Volume 76 (1987) no. 1, pp. 15-49 | DOI | MR | Zbl
Cité par Sources :