Dans cette note, un diagramme est associé à chaque espace de Hodge non abélien sur la droite affine.
In this announcement a diagram will be defined for each nonabelian Hodge space on the affine line.
Accepté le :
Publié le :
@article{CRMATH_2020__358_1_59_0, author = {Boalch, Philip and Yamakawa, Daisuke}, title = {Diagrams for nonabelian {Hodge} spaces on the affine line}, journal = {Comptes Rendus. Math\'ematique}, pages = {59--65}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {1}, year = {2020}, doi = {10.5802/crmath.11}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.11/} }
TY - JOUR AU - Boalch, Philip AU - Yamakawa, Daisuke TI - Diagrams for nonabelian Hodge spaces on the affine line JO - Comptes Rendus. Mathématique PY - 2020 SP - 59 EP - 65 VL - 358 IS - 1 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.11/ DO - 10.5802/crmath.11 LA - en ID - CRMATH_2020__358_1_59_0 ER -
%0 Journal Article %A Boalch, Philip %A Yamakawa, Daisuke %T Diagrams for nonabelian Hodge spaces on the affine line %J Comptes Rendus. Mathématique %D 2020 %P 59-65 %V 358 %N 1 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.11/ %R 10.5802/crmath.11 %G en %F CRMATH_2020__358_1_59_0
Boalch, Philip; Yamakawa, Daisuke. Diagrams for nonabelian Hodge spaces on the affine line. Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 59-65. doi : 10.5802/crmath.11. http://www.numdam.org/articles/10.5802/crmath.11/
[1] Symplectic manifolds and isomonodromic deformations, Adv. Math., Volume 163 (2001) no. 2, pp. 137-205 | DOI | MR | Zbl
[2] Irregular connections and Kac–Moody root systems (2008) (https://arxiv.org/abs/0806.1050)
[3] Quivers and difference Painlevé equations, Groups and symmetries. From Neolithic Scots to John McKay (CRM Proceedings & Lecture Notes), Volume 47, American Mathematical Society, 2009, pp. 25-51 | MR | Zbl
[4] Simply-laced isomonodromy systems, Publ. Math., Inst. Hautes Étud. Sci., Volume 116 (2012) no. 1, pp. 1-68 | DOI | MR | Zbl
[5] Global Weyl groups and a new theory of multiplicative quiver varieties, Geom. Topol., Volume 19 (2015) no. 6, pp. 3467-3536 | DOI | MR | Zbl
[6] Wild character varieties, meromorphic Hitchin systems and Dynkin diagrams, Geometry and Physics II. A festschrift in honour of Nigel Hitchin, Oxford University Press, 2018, pp. 425-446 | MR | Zbl
[7] Topology of the Stokes phenomenon (2019) (https://arxiv.org/abs/1903.12612)
[8] Twisted wild character varieties (2015) (https://arxiv.org/abs/1512.08091)
[9] Dihedral singularities and gravitational instantons, J. Geom. Phys., Volume 12 (1993) no. 2, pp. 77-91 | DOI | MR | Zbl
[10] Sur des équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Ann. Sci. Éc. Norm. Supér., Volume 29 (1912), pp. 1-126 | DOI | Zbl
[11] Linear differential equations on the Riemann sphere and representations of quivers, Duke Math. J., Volume 166 (2017) no. 5, pp. 855-935 | DOI | MR | Zbl
[12] Moduli spaces of meromorphic connections and quiver varieties, Adv. Math., Volume 266 (2014), pp. 120-151 | DOI | MR | Zbl
[13] Monodromy preserving deformations of linear differential equations with rational coefficients II, Physica D: Nonlinear Phenomena, Volume 2 (1981) no. 3, pp. 407-448 | DOI | MR | Zbl
[14] On the linearization of the Painlevé III-VI equations and reductions of the three-wave resonant system, J. Math. Phys., Volume 48 (2007) no. 10, 103512, 42 pages | Zbl
[15] Équations différentielles à coefficients polynomiaux, Progress in Mathematics, 96, Birkhäuser, 1991 | Zbl
[16] The Painlevé equations and the Dynkin diagrams, Painlevé transcendents: their asymptotics and physical applications (Sainte-Adèle, 1990) (NATO ASI Series. Series B. Physics), Volume 278, Plenum Press, 1990, pp. 299-313 | DOI | MR | Zbl
[17] Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Commun. Math. Phys., Volume 220 (2001) no. 1, pp. 165-229 | DOI | MR | Zbl
[18] Quiver varieties with multiplicities, Weyl groups of non-symmetric Kac-Moody algebras, and Painlevé equations, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 6 (2010), 087, 43 pages | MR | Zbl
Cité par Sources :