Équations aux dérivées partielles
A nonlocal Dirichlet problem with impulsive action: estimates of the growth for the solutions
Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1119-1128.

Through this paper we deal with the asymptotic behaviour as t+ of the solutions for a nonlocal diffusion problem with impulsive actions and Dirichlet condition. We establish a decay rate for the solutions assuming appropriate hypotheses on the impulsive functions and the nonlinear reaction.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.109
Ferreira, Jaqueline da Costa 1 ; Pereira, Marcone Corrêa 2

1 Depto. Matemática, CCE, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória - ES, Brazil
2 Depto. Matemática Aplicada, IME, Universidade de São Paulo, Rua do Matão 1010, São Paulo - SP, Brazil
@article{CRMATH_2020__358_11-12_1119_0,
     author = {Ferreira, Jaqueline da Costa and Pereira, Marcone Corr\^ea},
     title = {A nonlocal {Dirichlet} problem with impulsive action: estimates of the growth for the solutions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1119--1128},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.109},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.109/}
}
TY  - JOUR
AU  - Ferreira, Jaqueline da Costa
AU  - Pereira, Marcone Corrêa
TI  - A nonlocal Dirichlet problem with impulsive action: estimates of the growth for the solutions
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1119
EP  - 1128
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.109/
DO  - 10.5802/crmath.109
LA  - en
ID  - CRMATH_2020__358_11-12_1119_0
ER  - 
%0 Journal Article
%A Ferreira, Jaqueline da Costa
%A Pereira, Marcone Corrêa
%T A nonlocal Dirichlet problem with impulsive action: estimates of the growth for the solutions
%J Comptes Rendus. Mathématique
%D 2020
%P 1119-1128
%V 358
%N 11-12
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.109/
%R 10.5802/crmath.109
%G en
%F CRMATH_2020__358_11-12_1119_0
Ferreira, Jaqueline da Costa; Pereira, Marcone Corrêa. A nonlocal Dirichlet problem with impulsive action: estimates of the growth for the solutions. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1119-1128. doi : 10.5802/crmath.109. http://www.numdam.org/articles/10.5802/crmath.109/

[1] Bainov, Dimitrov D.; Minchev, Emil; Nakagawa, Kiyokazu Asymptotic behaviour of solutions of impulsive semilinear parabolic equation, Nonlinear Anal., Theory Methods Appl., Volume 30 (1997) no. 5, pp. 2725-2734 | DOI | MR | Zbl

[2] Bates, Peter W.; Fife, Paul C.; Ren, Xiaofeng; Wang, Xuefeng Travelling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., Volume 138 (1997) no. 2, pp. 105-136 | DOI | Zbl

[3] Benguria, Rafael D.; Pereira, Marcone C. Remarks on the spectrum of a nonlocal Dirichlet problem (2019) (https://arxiv.org/abs/1911.05803v3)

[4] Boucherif, Abdelkader; Al-Qahtani, Ali S.; Chanane, Bilal Existence of solutions for impulsive parabolic partial differential equations, Numer. Funct. Anal. Optim., Volume 36 (2015) no. 6, pp. 730-747 | DOI | MR | Zbl

[5] Chen, Xinfu Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution equations, Adv. Differ. Equ., Volume 2 (1997) no. 1, pp. 125-160 | Zbl

[6] Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D. Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions, Isr. J. Math., Volume 170 (2009), pp. 53-60 | DOI | MR | Zbl

[7] Fife, Paul C. Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in Nonlinear Analysis. On the occasion of the 60th birthday of Willi Jäger, Springer, 2003, pp. 153-191 | DOI | Zbl

[8] García-Melián, Jorge; Rossi, Julio D. On the principal eigenvalue of some nonlocal diffusion problems, J. Differ. Equations, Volume 246 (2009) no. 1, pp. 21-38 | DOI | MR | Zbl

[9] Hernández, Eduardo M.; Aki, Sueli M. Tanaka; Henríquez, Hernán Global solutions for impulsive abstract partial differential equations, Comput. Math. Appl., Volume 56 (2008) no. 5, pp. 1206-1215 | DOI | MR | Zbl

[10] Hutson, Vivian; Martínez, Salomé; Mischaikow, Konstantin; Vickers, Glenn T. The evolution of dispersal, J. Math. Biol., Volume 47 (2003) no. 6, pp. 483-517 | DOI | MR | Zbl

[11] Ignat, Liviu I.; Pinasco, Damián; Rossi, Julio D.; San Antolín, Angel Decay estimates for nonlinear nonlocal diffusion problems in the whole space, J. Anal. Math., Volume 122 (2014), pp. 375-401 | DOI | MR | Zbl

[12] Ignat, Liviu I.; Rossi, Julio D. Asymptotic behaviour for a nonlocal diffusion equation on a lattice, Z. Angew. Math. Phys., Volume 59 (2008) no. 5, pp. 918-925 | DOI | MR | Zbl

[13] Kindermann, Stefan; Osher, Stanley; Jones, Peter W. Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., Volume 4 (2005) no. 4, pp. 109-1115 | MR | Zbl

[14] Lakshmikantham, Vangipuram; Bainov, Drumi Dimitrov; Simeonov, e Pavel Sergeev Theory of impulsive differential equations, Series in Modern Applied Mathematics, 6, World Scientific, 1989 | MR | Zbl

[15] Pazy, A Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44, Springer, 1983 | MR | Zbl

[16] Pereira, Marcone C.; Rossi, Julio D. Nonlocal problems in thin domains, J. Differ. Equations, Volume 263 (2017) no. 3, pp. 1725-1754 | DOI | MR | Zbl

[17] Pereira, Marcone C.; Rossi, Julio D. Nonlocal problems in perforated domains, Proc. R. Soc. Edinb., Sect. A, Math., Volume 150 (2020) no. 1, pp. 305-335 | DOI | MR | Zbl

[18] Pérez-Llanos, Mayte; Rossi, Julio D. Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term, Nonlinear Anal., Theory Methods Appl., Volume 70 (2009) no. 4, pp. 1629-1640 | DOI | MR | Zbl

[19] Rodríguez-Bernal, Aníbal; Sastre-Gómez, Silvia Nonlinear Nonlocal Reaction-Diffusion Equations, Advances in Differential Equations and Applications (SEMA SIMAI Springer Series), Volume 4, Springer, 2014, pp. 53-61 | DOI | MR | Zbl

[20] Rodríguez-Bernal, Aníbal; Sastre-Gómez, Silvia Linear nonlocal diffusion problems in metric measure spaces, Proc. R. Soc. Edinb., Sect. A, Math., Volume 146 (2016) no. 4, pp. 833-863 | DOI | Zbl

[21] Samoilenko, Anatoliĭ Mykhaĭlovych; Perestyuk, Nikolai A. Impulse Differential Equations, World Scientific Series on Nonlinear Science. Series A, 14, World Scientific, 1995 | Zbl

Cité par Sources :