Nous montrons que la série génératrice des arbres étiquetés n’est pas -finie.
We show that the generating function of labelled trees is not -finite.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_9-10_1005_0, author = {Bostan, Alin and Jim\'enez-Pastor, Antonio}, title = {On the exponential generating function of labelled trees}, journal = {Comptes Rendus. Math\'ematique}, pages = {1005--1009}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {9-10}, year = {2020}, doi = {10.5802/crmath.108}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.108/} }
TY - JOUR AU - Bostan, Alin AU - Jiménez-Pastor, Antonio TI - On the exponential generating function of labelled trees JO - Comptes Rendus. Mathématique PY - 2020 SP - 1005 EP - 1009 VL - 358 IS - 9-10 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.108/ DO - 10.5802/crmath.108 LA - en ID - CRMATH_2020__358_9-10_1005_0 ER -
%0 Journal Article %A Bostan, Alin %A Jiménez-Pastor, Antonio %T On the exponential generating function of labelled trees %J Comptes Rendus. Mathématique %D 2020 %P 1005-1009 %V 358 %N 9-10 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.108/ %R 10.5802/crmath.108 %G en %F CRMATH_2020__358_9-10_1005_0
Bostan, Alin; Jiménez-Pastor, Antonio. On the exponential generating function of labelled trees. Comptes Rendus. Mathématique, Tome 358 (2020) no. 9-10, pp. 1005-1009. doi : 10.5802/crmath.108. http://www.numdam.org/articles/10.5802/crmath.108/
[1] Proofs from The Book, Springer, 2010, viii+274 pages | DOI | Zbl
[2] Special functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, 1999, xvi+664 pages | DOI | MR | Zbl
[3] Graph theory. 1736–1936, Clarendon Press, 1986, xii+239 pages | Zbl
[4] Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante, J. Reine Angew. Math., Volume 57 (1860), pp. 111-121 | DOI | MR
[5] Differential transcendence of Bell numbers and relatives — a Galois theoretic approach, 2020 (In preparation)
[6] A theorem on trees, Q. J. Math, Volume 23 (1889), pp. 376-378
[7] On the Lambert function, Adv. Comput. Math., Volume 5 (1996) no. 4, pp. 329-359 | DOI | MR | Zbl
[8] On the non-holonomic character of logarithms, powers, and the th prime function, Electron. J. Comb., Volume 11 (2005) no. 2, A2, 16 pages | Zbl
[9] Analytic combinatorics, Cambridge University Press, 2009, xiv+810 pages | DOI | Zbl
[10] On some non-holonomic sequences, Electron. J. Comb., Volume 11 (2004) no. 1, 87, 8 pages | MR | Zbl
[11] Computing with D-algebraic power series, Appl. Algebra Eng. Commun. Comput., Volume 30 (2019) no. 1, pp. 17-49 | DOI | MR | Zbl
[12] Sur une identité d’Abel et sur d’autres formules analogues, Acta Math., Volume 26 (1902) no. 1, pp. 307-318 | DOI | Zbl
[13] A computable extension for D-finite functions: DD-finite functions, J. Symb. Comput., Volume 94 (2019), pp. 90-104 | DOI | MR | Zbl
[14] Some structural results on -finite functions, Adv. Appl. Math., Volume 117 (2020), 102027, 29 pages | DOI | MR | Zbl
[15] Bell numbers, their relatives, and algebraic differential equations, J. Comb. Theory, Ser. A, Volume 102 (2003) no. 1, pp. 63-87 | DOI | MR | Zbl
[16] Combinatorial problems and exercises, North-Holland, 1993, 635 pages | Zbl
[17] The differential equations satisfied by certain functions, J. Indian Math. Soc., New Ser., Volume 8 (1944), pp. 27-28 | MR | Zbl
[18] Combinatorial Autonomous first order differential equations, 2019 (preprint, https://arxiv.org/abs/1904.08152v1)
[19] Complexity problems in enumerative combinatorics, Proceedings of the International Congress of Mathematicians — Rio de Janeiro 2018. Vol. IV. Invited lectures, World Scientific (2018), pp. 3153-3180 | Zbl
[20] The nonminimality of the differential closure, Pac. J. Math., Volume 52 (1974), pp. 529-537 | DOI | MR | Zbl
[21] A survey of transcendentally transcendental functions, Am. Math. Mon., Volume 96 (1989) no. 9, pp. 777-788 | DOI | MR | Zbl
[22] Algebraic relations among solutions of linear differential equations, Trans. Am. Math. Soc., Volume 295 (1986) no. 2, pp. 753-763 | DOI | MR | Zbl
[23] Differentiably finite power series, Eur. J. Comb., Volume 1 (1980) no. 2, pp. 175-188 | DOI | MR | Zbl
Cité par Sources :