Théorie des nombres
Green’s problem on additive complements of the squares
Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 897-900.

Let A and B be two subsets of the nonnegative integers. We call A and B additive complements if all sufficiently large integers n can be written as a+b, where aA and bB. Let S={1 2 ,2 2 ,3 2 ,···} be the set of all square numbers. Ben Green was interested in the additive complement of S. He asked whether there is an additive complement B={b n } n=1 which satisfies b n =π 2 16n 2 +o(n 2 ). Recently, Chen and Fang proved that if B is such an additive complement, then

lim sup n π 2 16n 2 -b n n 1/2 logn2 π1 log4.

They further conjectured that

lim sup n π 2 16n 2 -b n n 1/2 logn=+.

In this paper, we confirm this conjecture by giving a much more stronger result, i.e.,

lim sup n π 2 16n 2 -b n nπ 4.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.107
Classification : 11B13, 11B75
Ding, Yuchen 1

1 School of Mathematical Science, Yangzhou University, Yangzhou 225002, P. R. China
@article{CRMATH_2020__358_8_897_0,
     author = {Ding, Yuchen},
     title = {Green{\textquoteright}s problem on additive complements of the squares},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {897--900},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {8},
     year = {2020},
     doi = {10.5802/crmath.107},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.107/}
}
TY  - JOUR
AU  - Ding, Yuchen
TI  - Green’s problem on additive complements of the squares
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 897
EP  - 900
VL  - 358
IS  - 8
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.107/
DO  - 10.5802/crmath.107
LA  - en
ID  - CRMATH_2020__358_8_897_0
ER  - 
%0 Journal Article
%A Ding, Yuchen
%T Green’s problem on additive complements of the squares
%J Comptes Rendus. Mathématique
%D 2020
%P 897-900
%V 358
%N 8
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.107/
%R 10.5802/crmath.107
%G en
%F CRMATH_2020__358_8_897_0
Ding, Yuchen. Green’s problem on additive complements of the squares. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 897-900. doi : 10.5802/crmath.107. http://www.numdam.org/articles/10.5802/crmath.107/

[1] Balasubramanian, Ramachandran On the additive completion of squares, J. Number Theory, Volume 29 (1988) no. 1, pp. 10-12 | DOI | MR | Zbl

[2] Balasubramanian, Ramachandran; Ramana, D. S. Additive complements of the squares, C. R. Math. Acad. Sci., Soc. R. Can., Volume 23 (2001) no. 1, pp. 6-11 | MR | Zbl

[3] Balasubramanian, Ramachandran; Soundararajan, Kannan On the additive completion of squares. II., J. Number Theory, Volume 40 (1992) no. 2, pp. 127-129 | DOI | MR | Zbl

[4] Chen, Yong-Gao; Fang, Jin-Hui Additive complements of the squares, J. Number Theory, Volume 180 (2017), pp. 410-422 | DOI | MR | Zbl

[5] Cilleruelo, Javier The additive completion of k th powers, J. Number Theory, Volume 44 (1993) no. 3, pp. 237-243 | DOI | MR | Zbl

[6] Erdős, Pál Problems and Results in Additive Number Theory, Colloque sur la Thérie des Nombres, Bruxelles, 1955, George Thone; Masson, 1956, pp. 127-137 | Zbl

[7] Habsieger, Laurent On the additive completion of polynomial sets, J. Number Theory, Volume 51 (1995) no. 1, pp. 130-135 | DOI | MR | Zbl

[8] Moser, Leo On the additive completion of sets of integers, Proceedings of Symposia in Pure Mathematics, Volume 8, American Mathematical Society (1965), pp. 175-180 | DOI | MR | Zbl

Cité par Sources :