On démontre un résultat complémentaire à ceux manifestant le caractère bien posé probabiliste de l’équation des ondes avec des données initiales de régularité de Sobolev super critique par rapport au changement d’échelle laissant invariant l’équation.
We prove a complementary result to the probabilistic well-posedness for the nonlinear wave equation. More precisely, we show that there is a dense set of the Sobolev space of super-critical regularity such that (in sharp contrast with the probabilistic well-posedness results) the family of global smooth solutions, generated by the convolution with some approximate identity of the elements of , does not converge in the space of super-critical Sobolev regularity.
Accepté le :
Publié le :
@article{CRMATH_2020__358_9-10_989_0, author = {Sun, Chenmin and Tzvetkov, Nikolay}, title = {Concerning the pathological set in the context of probabilistic well-posedness}, journal = {Comptes Rendus. Math\'ematique}, pages = {989--999}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {9-10}, year = {2020}, doi = {10.5802/crmath.102}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.102/} }
TY - JOUR AU - Sun, Chenmin AU - Tzvetkov, Nikolay TI - Concerning the pathological set in the context of probabilistic well-posedness JO - Comptes Rendus. Mathématique PY - 2020 SP - 989 EP - 999 VL - 358 IS - 9-10 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.102/ DO - 10.5802/crmath.102 LA - en ID - CRMATH_2020__358_9-10_989_0 ER -
%0 Journal Article %A Sun, Chenmin %A Tzvetkov, Nikolay %T Concerning the pathological set in the context of probabilistic well-posedness %J Comptes Rendus. Mathématique %D 2020 %P 989-999 %V 358 %N 9-10 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.102/ %R 10.5802/crmath.102 %G en %F CRMATH_2020__358_9-10_989_0
Sun, Chenmin; Tzvetkov, Nikolay. Concerning the pathological set in the context of probabilistic well-posedness. Comptes Rendus. Mathématique, Tome 358 (2020) no. 9-10, pp. 989-999. doi : 10.5802/crmath.102. http://www.numdam.org/articles/10.5802/crmath.102/
[1] Loss of regularity for supercritical nonlinear Schrödinger equations, Math. Ann., Volume 343 (2009) no. 2, pp. 397-420 | DOI | Zbl
[2] On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on , , Trans. Am. Math. Soc., Volume 2 (2015), pp. 1-50 | DOI | Zbl
[3] Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., Volume 176 (1996) no. 2, pp. 421-445 | DOI | Zbl
[4] Random data Cauchy theory for supercritical wave equations I: local theory, Invent. Math., Volume 173 (2008) no. 3, pp. 449-475 | DOI | MR | Zbl
[5] Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc. (JEMS), Volume 16 (2014) no. 1, pp. 1-30 | DOI | MR | Zbl
[6] Ill-posedness for nonlinear Schrödinger and wave equations (2003) (https://arxiv.org/abs/math/0311048)
[7] Almost sure local well-posedness of the cubic NLS below , Duke Math. J., Volume 161 (2012) no. 3, pp. 367-414 | DOI | Zbl
[8] Regularity and asymptotic behaviour of the wave equation with a critical non linearity, Ann. Math., Volume 132 (1990) no. 3, pp. 485-509 | DOI | MR | Zbl
[9] Almost Sure Existence of Global Solutions for supercritical semilinear Wave Equations (2018) (https://arxiv.org/abs/1809.07061)
[10] Nonlinear optic and supercritical wave equation, Bull. Soc. R. Sci. Liège, Volume 70 (2001) no. 4-6, pp. 267-306 | Zbl
[11] Perte de régularité pour l’équation d’ondes sur-critiques, Bull. Soc. Math. Fr., Volume 133 (2005) no. 1, pp. 145-157 | DOI | Zbl
[12] A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations, Duke Math. J., Volume 72 (1993) no. 2, pp. 503-539 | DOI | MR | Zbl
[13] Random data Cauchy theory for nonlinear wave equations of power-type on , Commun. Partial Differ. Equations, Volume 39 (2014) no. 12, pp. 2262-2283 | DOI | MR | Zbl
[14] Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on , J. Math. Pures Appl., Volume 105 (2016) no. 3, pp. 342-366 | MR | Zbl
[15] Well-posedness in the energy space for semilinear wave equation with critical growth, Int. Math. Res. Not., Volume 1094 (1994) no. 7, pp. 303-309 | DOI | MR | Zbl
[16] New examples of probabilistic well-posedness for nonlinear wave equations, J. Funct. Anal., Volume 278 (2020) no. 2, 108322, 47 pages | MR | Zbl
[17] Probabilistic well-posedness for supercritical wave equations with periodic boundary condition on dimension three, Ill. J. Math., Volume 60 (2016) no. 2, pp. 481-503 | MR | Zbl
[18] Random data wave equations, Lecture Notes in Mathematics, 2253, Springer, 2019, pp. 221-313 | MR
[19] Equations aux dérivées partielles et aléa, Ph. D. Thesis, Université Paris-Sud, (France) (2016)
Cité par Sources :