Théorie des nombres
A short proof of the canonical polynomial van der Waerden theorem
[Une démonstration courte du théorème de van der Waerden polynomial canonique]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 957-959.

Nous présentons une nouvelle démonstration courte du théorème de van der Waerden polynomial canonique, récemment établi par Girão.

We present a short new proof of the canonical polynomial van der Waerden theorem, recently established by Girão.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.101
Classification : 05D10, 11B30
Fox, Jacob 1 ; Wigderson, Yuval 1 ; Zhao, Yufei 2

1 Department of Mathematics, Stanford University, Stanford, CA, USA
2 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
@article{CRMATH_2020__358_8_957_0,
     author = {Fox, Jacob and Wigderson, Yuval and Zhao, Yufei},
     title = {A short proof of the canonical polynomial van der {Waerden} theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {957--959},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {8},
     year = {2020},
     doi = {10.5802/crmath.101},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.101/}
}
TY  - JOUR
AU  - Fox, Jacob
AU  - Wigderson, Yuval
AU  - Zhao, Yufei
TI  - A short proof of the canonical polynomial van der Waerden theorem
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 957
EP  - 959
VL  - 358
IS  - 8
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.101/
DO  - 10.5802/crmath.101
LA  - en
ID  - CRMATH_2020__358_8_957_0
ER  - 
%0 Journal Article
%A Fox, Jacob
%A Wigderson, Yuval
%A Zhao, Yufei
%T A short proof of the canonical polynomial van der Waerden theorem
%J Comptes Rendus. Mathématique
%D 2020
%P 957-959
%V 358
%N 8
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.101/
%R 10.5802/crmath.101
%G en
%F CRMATH_2020__358_8_957_0
Fox, Jacob; Wigderson, Yuval; Zhao, Yufei. A short proof of the canonical polynomial van der Waerden theorem. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 957-959. doi : 10.5802/crmath.101. http://www.numdam.org/articles/10.5802/crmath.101/

[1] Bergelson, Vitaly; Leibman, Alexander Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Am. Math. Soc., Volume 9 (1996) no. 3, pp. 725-753 | DOI | MR | Zbl

[2] Erdős, Pál; Graham, Ronald L. Old and new problems and results in combinatorial number theory, Monographies de l’Enseignement Mathématique, 28, L’Enseignement Mathématique, 1980, 128 pages | MR | Zbl

[3] Erdős, Pál; Rado, Richard A combinatorial theorem, J. Lond. Math. Soc., Volume 25 (1950), pp. 249-255 | DOI | MR | Zbl

[4] Girão, António A canonical polynomial van der Waerden’s theorem (https://arxiv.org/abs/2004.07766) | Zbl

[5] Hua, Loo Keng Introduction to number theory, Springer, 1982 | MR | Zbl

[6] Linnik, Yuriĭ V. An elementary solution of the problem of Waring by Schnirelman’s method, Mat. Sb., N. Ser., Volume 12(54) (1943), pp. 225-230 | MR | Zbl

[7] Szemerédi, Endre On sets of integers containing no k elements in arithmetic progression, Acta Arith., Volume 27 (1975), pp. 199-245 | DOI | MR | Zbl

Cité par Sources :