Nous présentons une nouvelle démonstration courte du théorème de van der Waerden polynomial canonique, récemment établi par Girão.
We present a short new proof of the canonical polynomial van der Waerden theorem, recently established by Girão.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_8_957_0, author = {Fox, Jacob and Wigderson, Yuval and Zhao, Yufei}, title = {A short proof of the canonical polynomial van der {Waerden} theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {957--959}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {8}, year = {2020}, doi = {10.5802/crmath.101}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.101/} }
TY - JOUR AU - Fox, Jacob AU - Wigderson, Yuval AU - Zhao, Yufei TI - A short proof of the canonical polynomial van der Waerden theorem JO - Comptes Rendus. Mathématique PY - 2020 SP - 957 EP - 959 VL - 358 IS - 8 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.101/ DO - 10.5802/crmath.101 LA - en ID - CRMATH_2020__358_8_957_0 ER -
%0 Journal Article %A Fox, Jacob %A Wigderson, Yuval %A Zhao, Yufei %T A short proof of the canonical polynomial van der Waerden theorem %J Comptes Rendus. Mathématique %D 2020 %P 957-959 %V 358 %N 8 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.101/ %R 10.5802/crmath.101 %G en %F CRMATH_2020__358_8_957_0
Fox, Jacob; Wigderson, Yuval; Zhao, Yufei. A short proof of the canonical polynomial van der Waerden theorem. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 957-959. doi : 10.5802/crmath.101. http://www.numdam.org/articles/10.5802/crmath.101/
[1] Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Am. Math. Soc., Volume 9 (1996) no. 3, pp. 725-753 | DOI | MR | Zbl
[2] Old and new problems and results in combinatorial number theory, Monographies de l’Enseignement Mathématique, 28, L’Enseignement Mathématique, 1980, 128 pages | MR | Zbl
[3] A combinatorial theorem, J. Lond. Math. Soc., Volume 25 (1950), pp. 249-255 | DOI | MR | Zbl
[4] A canonical polynomial van der Waerden’s theorem (https://arxiv.org/abs/2004.07766) | Zbl
[5] Introduction to number theory, Springer, 1982 | MR | Zbl
[6] An elementary solution of the problem of Waring by Schnirelman’s method, Mat. Sb., N. Ser., Volume 12(54) (1943), pp. 225-230 | MR | Zbl
[7] On sets of integers containing no elements in arithmetic progression, Acta Arith., Volume 27 (1975), pp. 199-245 | DOI | MR | Zbl
Cité par Sources :