Combinatoire, Physique mathématique
A two-sided Faulhaber-like formula involving Bernoulli polynomials
[Une formule bilatérale de type Faulhaber utilisant les polynômes de Bernoulli]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 41-44.

Nous donnons une nouvelle identité utilisant les polynômes de Bernoulli et les coefficient binomiaux. Ceci fournit, en particulier, une formule de type Faulhaber pour des sommes de la forme 1 m (n-1) m +2 m (n-2) m ++(n-1) m 1 m m et n sont des entiers positifs.

We give a new identity involving Bernoulli polynomials and combinatorial numbers. This provides, in particular, a Faulhaber-like formula for sums of the form 1 m (n-1) m +2 m (n-2) m ++(n-1) m 1 m for positive integers m and n.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.10
Barbero G., J. Fernando 1, 2 ; Margalef-Bentabol, Juan 2, 3, 4 ; Villaseñor, Eduardo J.S. 2, 5

1 Instituto de Estructura de la Materia, CSIC. Serrano 123, 28006 Madrid, Spain
2 Grupo de Teorías de Campos y Física Estadística. Instituto Gregorio Millán (UC3M). Unidad Asociada al Instituto de Estructura de la Materia, CSIC, Madrid, Spain
3 Laboratory of Geometry and Dynamical Systems, Department of Mathematics, EPSEB, Universitat Politècnica de Catalunya, BGSMath, Barcelona, Spain
4 Institute for Gravitation and the Cosmos & Physics Department, Penn State, University Park, PA 16802, USA
5 Departamento de Matemáticas, Universidad Carlos III de Madrid. Avda. de la Universidad 30, 28911 Leganés, Spain
@article{CRMATH_2020__358_1_41_0,
     author = {Barbero G., J. Fernando and Margalef-Bentabol, Juan and Villase\~nor, Eduardo J.S.},
     title = {A two-sided {Faulhaber-like} formula involving {Bernoulli} polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {41--44},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {1},
     year = {2020},
     doi = {10.5802/crmath.10},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.10/}
}
TY  - JOUR
AU  - Barbero G., J. Fernando
AU  - Margalef-Bentabol, Juan
AU  - Villaseñor, Eduardo J.S.
TI  - A two-sided Faulhaber-like formula involving Bernoulli polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 41
EP  - 44
VL  - 358
IS  - 1
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.10/
DO  - 10.5802/crmath.10
LA  - en
ID  - CRMATH_2020__358_1_41_0
ER  - 
%0 Journal Article
%A Barbero G., J. Fernando
%A Margalef-Bentabol, Juan
%A Villaseñor, Eduardo J.S.
%T A two-sided Faulhaber-like formula involving Bernoulli polynomials
%J Comptes Rendus. Mathématique
%D 2020
%P 41-44
%V 358
%N 1
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.10/
%R 10.5802/crmath.10
%G en
%F CRMATH_2020__358_1_41_0
Barbero G., J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J.S. A two-sided Faulhaber-like formula involving Bernoulli polynomials. Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 41-44. doi : 10.5802/crmath.10. http://www.numdam.org/articles/10.5802/crmath.10/

[1] Barbero G., J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S. On the distribution of the eigenvalues of the area operator in loop quantum gravity, Class. Quant. Grav., Volume 35 (2018) no. 6, 065008, 17 pages | MR | Zbl

[2] Kolosov, Petro On the relation between binomial theorem and discrete convolution of piecewise defined power function (2016) (https://arxiv.org/abs/1603.02468)

[3] Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences, 2010 (http://oeis.org)

[4] Sun, Zhi-Wei Combinatorial identities in dual sequences, Eur. J. Comb., Volume 24 (2003) no. 6, pp. 709-718 | MR | Zbl

Cité par Sources :