Nous donnons une nouvelle identité utilisant les polynômes de Bernoulli et les coefficient binomiaux. Ceci fournit, en particulier, une formule de type Faulhaber pour des sommes de la forme où et sont des entiers positifs.
We give a new identity involving Bernoulli polynomials and combinatorial numbers. This provides, in particular, a Faulhaber-like formula for sums of the form for positive integers and .
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_1_41_0, author = {Barbero G., J. Fernando and Margalef-Bentabol, Juan and Villase\~nor, Eduardo J.S.}, title = {A two-sided {Faulhaber-like} formula involving {Bernoulli} polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {41--44}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {1}, year = {2020}, doi = {10.5802/crmath.10}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.10/} }
TY - JOUR AU - Barbero G., J. Fernando AU - Margalef-Bentabol, Juan AU - Villaseñor, Eduardo J.S. TI - A two-sided Faulhaber-like formula involving Bernoulli polynomials JO - Comptes Rendus. Mathématique PY - 2020 SP - 41 EP - 44 VL - 358 IS - 1 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.10/ DO - 10.5802/crmath.10 LA - en ID - CRMATH_2020__358_1_41_0 ER -
%0 Journal Article %A Barbero G., J. Fernando %A Margalef-Bentabol, Juan %A Villaseñor, Eduardo J.S. %T A two-sided Faulhaber-like formula involving Bernoulli polynomials %J Comptes Rendus. Mathématique %D 2020 %P 41-44 %V 358 %N 1 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.10/ %R 10.5802/crmath.10 %G en %F CRMATH_2020__358_1_41_0
Barbero G., J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J.S. A two-sided Faulhaber-like formula involving Bernoulli polynomials. Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 41-44. doi : 10.5802/crmath.10. http://www.numdam.org/articles/10.5802/crmath.10/
[1] On the distribution of the eigenvalues of the area operator in loop quantum gravity, Class. Quant. Grav., Volume 35 (2018) no. 6, 065008, 17 pages | MR | Zbl
[2] On the relation between binomial theorem and discrete convolution of piecewise defined power function (2016) (https://arxiv.org/abs/1603.02468)
[3] The On-Line Encyclopedia of Integer Sequences, 2010 (http://oeis.org)
[4] Combinatorial identities in dual sequences, Eur. J. Comb., Volume 24 (2003) no. 6, pp. 709-718 | MR | Zbl
Cité par Sources :