Cette note porte sur une problématique de modélisation issue de la théorie des jeux à champ moyen. On montre comment il est possible de modéliser des jeux à champ moyen avec un agent majoritaire qui a un avantage stratégique, tout en restant dans un cas où on ne considère que des stratégies markoviennes en boucles fermées pour tous les joueurs. Nous illustrons ce fait autour de trois exemples.
This note is concerned with a modeling question arising from the mean field games theory. We show how to model mean field games involving a major player which has a strategic advantage, while only allowing closed loop markovian strategies for all the players. We illustrate this property through three examples.
Accepté le :
Publié le :
@article{CRMATH_2020__358_2_113_0, author = {Bertucci, Charles and Lasry, Jean-Michel and Lions, Pierre-Louis}, title = {Strategic advantages in mean field games with a major player}, journal = {Comptes Rendus. Math\'ematique}, pages = {113--118}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {2}, year = {2020}, doi = {10.5802/crmath.1}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.1/} }
TY - JOUR AU - Bertucci, Charles AU - Lasry, Jean-Michel AU - Lions, Pierre-Louis TI - Strategic advantages in mean field games with a major player JO - Comptes Rendus. Mathématique PY - 2020 SP - 113 EP - 118 VL - 358 IS - 2 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.1/ DO - 10.5802/crmath.1 LA - en ID - CRMATH_2020__358_2_113_0 ER -
%0 Journal Article %A Bertucci, Charles %A Lasry, Jean-Michel %A Lions, Pierre-Louis %T Strategic advantages in mean field games with a major player %J Comptes Rendus. Mathématique %D 2020 %P 113-118 %V 358 %N 2 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.1/ %R 10.5802/crmath.1 %G en %F CRMATH_2020__358_2_113_0
Bertucci, Charles; Lasry, Jean-Michel; Lions, Pierre-Louis. Strategic advantages in mean field games with a major player. Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 113-118. doi : 10.5802/crmath.1. http://www.numdam.org/articles/10.5802/crmath.1/
[1] Mean field games with a dominating player, Appl. Math. Optim., Volume 74 (2016) no. 1, pp. 91-128 | DOI | MR | Zbl
[2] Fokker-planck equations of jumping particles and mean field games of impulse control (2018) (https://arxiv.org/abs/1803.06126) | Zbl
[3] Optimal stopping in mean field games, an obstacle problem approach, J. Math. Pures Appl., Volume 120 (2018), pp. 165-194 | DOI | MR | Zbl
[4] Some remarks on mean field games, Commun. Partial Differ. Equations, Volume 44 (2019) no. 3, pp. 205-227 | DOI | MR | Zbl
[5] Remarks on Nash equilibria in mean field game models with a major player (2018) (https://arxiv.org/abs/1811.02811)
[6] Probabilistic Theory of Mean Field Games with Applications I-II, Probability Theory and Stochastic Modelling, 83-84, Springer, 2018 | Zbl
[7] et al. Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., Volume 6 (2006) no. 3, pp. 221-252 | MR | Zbl
[8] Income and wealth heterogeneity in the macroeconomy, J. Polit. Econ., Volume 106 (1998) no. 5, pp. 867-896 | DOI
[9] Mean field games, Jap. J. Math., Volume 2 (2007) no. 1, pp. 229-260 | DOI | MR | Zbl
[10] Mean-field games with a major player, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 8, pp. 886-890 | DOI | MR | Zbl
[11] Cours au Collège de France, 2007 (https://www.college-de-france.fr/site/pierre-louis-lions/_course.htm)
Cité par Sources :