This review concerns the resolution of a special case of Knizhnik-Zamolodchikov equations (
In particular, we describe the action of the differential Galois group of
Révisé le :
Accepté le :
Publié le :
Mots-clés : Algebraic Basis, Combinatorial Hopf Algebra, Harmonic Sum, Polylogarithm, Polyzeta
@article{CML_2019__11_2_25_0, author = {Hoang Ngoc Minh, Vincel}, title = {On the solutions of the universal differential equation with three regular singularities {(On} solutions of $KZ_3$)}, journal = {Confluentes Mathematici}, pages = {25--64}, publisher = {Institut Camille Jordan}, volume = {11}, number = {2}, year = {2019}, doi = {10.5802/cml.59}, language = {en}, url = {https://www.numdam.org/articles/10.5802/cml.59/} }
TY - JOUR AU - Hoang Ngoc Minh, Vincel TI - On the solutions of the universal differential equation with three regular singularities (On solutions of $KZ_3$) JO - Confluentes Mathematici PY - 2019 SP - 25 EP - 64 VL - 11 IS - 2 PB - Institut Camille Jordan UR - https://www.numdam.org/articles/10.5802/cml.59/ DO - 10.5802/cml.59 LA - en ID - CML_2019__11_2_25_0 ER -
%0 Journal Article %A Hoang Ngoc Minh, Vincel %T On the solutions of the universal differential equation with three regular singularities (On solutions of $KZ_3$) %J Confluentes Mathematici %D 2019 %P 25-64 %V 11 %N 2 %I Institut Camille Jordan %U https://www.numdam.org/articles/10.5802/cml.59/ %R 10.5802/cml.59 %G en %F CML_2019__11_2_25_0
Hoang Ngoc Minh, Vincel. On the solutions of the universal differential equation with three regular singularities (On solutions of $KZ_3$). Confluentes Mathematici, Tome 11 (2019) no. 2, pp. 25-64. doi : 10.5802/cml.59. https://www.numdam.org/articles/10.5802/cml.59/
[1] J. Berstel, C. Reutenauer. Rational series and their languages, Springer Verlag, 1988. | Zbl
[2] M. Bigotte. Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d’Euler-Zagier colorés, Ph. D., Lille, 2000.
[3] V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh. Schützenberger’s factorization on the (completed) Hopf algebra of
[4] V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh, L. Kane, C. Tollu. Dual bases for non commutative symmetric and quasi-symmetric functions via monoidal factorization, dans Journal of Symbolic Computation (2015). | DOI | MR | Zbl
[5] V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh. Structure of Polyzetas and Explicit Representation on Transcendence Bases of Shuffle and Stuffle Algebras, Journal of Symbolic Computation, 83, pp. 93-111 (2017). | DOI | MR | Zbl
[6] V.C. Bui, G.H.E. Duchamp, N. Hoang, V. Hoang Ngoc Minh, C. Tollu. Combinatorics on the
[7] V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh, Q.H. Ngo, C. Tollu. (Pure) transcendence bases in
[8] N. Bourbaki. Topologie générale, Springer (1974) | Zbl
[9] P. Cartier. Jacobiennes généralisées, monodromie unipotente et intégrales itérées, Séminaire Bourbaki, 687 (1987), 31–52.
[10] P. Cartier. Fonctions polylogarithmes, nombres polyzetas et groupes pro-unipotents. Séminaire Bourbaki,
[11] K.-T. Chen. Iterated integrals and exponential homomorphisms, Proc. Lond. Mathem. Soc. (3) 4 (1954) 502–512. | DOI | MR | Zbl
[12] C. Costermans. Calcul non nommutatif : analyse des constantes d’arbre de fouille, thèse, Lille, 2008.
[13] C. Costermans, J.Y. Enjalbert and V. Hoang Ngoc Minh. Algorithmic and combinatoric aspects of multiple harmonic sums, Discrete Mathematics & Theoretical Computer Science Proceedings, 2005. | Zbl
[14] C. Costermans, V. Hoang Ngoc Minh. Some Results à l’Abel Obtained by Use of Techniques à la Hopf, “Workshop on Global Integrability of Field Theories and Applications”, Daresbury (UK), 1-3, November 2006. | Zbl
[15] C. Chevalley. Fundamental Concepts of Algebra, Academic Press, New York, 1956. | Zbl
[16] C. Costermans, V. Hoang Ngoc Minh. Noncommutative algebra, multiple harmonic sums and applications in discrete probability, Journal of Symbolic Computation, (2009), 801-817. | DOI | MR | Zbl
[17] M. Deneufchâtel. Intégrales itérées et physique combinatoire, Ph. D., Paris 13, 2012.
[18] P. Deligne. Equations Différentielles à Points Singuliers Réguliers, Lecture Notes in Math, 163, Springer-Verlag (1970). | DOI | Zbl
[19] M. Deneufchâtel, G.H.E. Duchamp, V. Hoang Ngoc Minh, A.I. Solomon. Independence of hyperlogarithms over function fields via algebraic combinatorics, dans Lec. N. in Comp. Sc. (2011), Volume 6742/2011, 127-139. | DOI | Zbl
[20] J. Dieudonné. Calcul infinitésimal, Hermann (1968). | DOI
[21] G.H.E. Duchamp, V. Hoang Ngoc Minh, Q.H. Ngo. Harmonic sums and polylogarithms at negative multi-indices, Journal of Symbolic Computation, 83, pp. 166-186 (2017). | DOI | MR | Zbl
[22] G.H.E. Duchamp, V. Hoang Ngoc Minh, Q.H. Ngo. Kleene stars of the plane, polylogarithms and symmetries, soumitted to TCS. | DOI | MR | Zbl
[23] V. Drinfel’d. Quantum groups, Proc. Int. Cong. Math., Berkeley, 1986.
[24] V. Drinfel’d. Quasi-Hopf Algebras, Len. Math. J., 1, 1419-1457, 1990.
[25] V. Drinfel’d. On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(
[26] F.J. Dyson, The radiation theories of Tomonaga, Schwinger and Feynman, Physical Rev, vol 75, (1949), pp. 486-502. | DOI | MR | Zbl
[27] S. Eilenberg and S. Mac Lane. On the groups H(
[28] E. Wardi. Mémoire de DEA, Lille, 1999.
[29] J.Y. Enjalbert, V. Hoang Ngoc Minh. Analytic and combinatorial aspects of Hurwitz polyzêtas, J. Th. des Nomb. de Bord., Vol. 19, (2007), 599-644. | DOI | MR | Zbl
[30] J.Y. Enjalbert, V. Hoang Ngoc Minh. Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues, J. Th. des Nomb. de Bord., 23 no. 2 (2011), 353-386. | DOI | Zbl
[31] J.Y. Enjalbert, G.H.E. Duchamp, V. Hoang Ngoc Minh, C. Tollu. The contrivances of shuffle products and their siblings, Discrete Mathematics 340(9): 2286-2300 (2017). | DOI | MR | Zbl
[32] P. Flajolet, R. Sedgewick. Analytic combinatorics, Cambridge University Press, 2009. | DOI | Zbl
[33] M. Fliess. Fonctionnelles causales non linéaires et indéterminées non commutatives, Bull. Soc. Math. France, N
[34] J. Gonzalez-Lorca. Série de Drinfel’d, monodromie et algèbres de Hecke, Ph. D., Ecole Normale Supérieure, Paris, 1998.
[35] V Hoang Ngoc Minh. Summations of Polylogarithms via Evaluation Transform, dans Math. & Computers in Simulations, 1336, pp 707-728, 1996. | DOI | MR | Zbl
[36] V. Hoang Ngoc Minh. Fonctions de Dirichlet d’ordre
[37] V. Hoang Ngoc Minh & Jacob G.. Symbolic Integration of meromorphic differential equation via Dirichlet functions, Disc. Math. 210, pp. 87-116, 2000. | DOI | MR | Zbl
[38] V. Hoang Ngoc Minh, G. Jacob, N.E. Oussous, M. Petitot. Aspects combinatoires des polylogarithmes et des sommes d’Euler-Zagier, Journal Electronique du Séminaire Lotharingien de Combinatoire, B43e, (2000).
[39] V. Hoang Ngoc Minh, G. Jacob, N.E. Oussous, M. Petitot. De l’algèbre des
[40] V. Hoang Ngoc Minh, M. Petitot. Lyndon words, polylogarithmic functions and the Riemann
[41] V. Hoang Ngoc Minh, M. Petitot, J. Van der Hoeven. Polylogarithms and Shuffle Algebra, Proceedings of FPSAC’98, 1998.
[42] V. Hoang Ngoc Minh. Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series, Proceedings of
[43] V. Hoang Ngoc Minh. Differential Galois groups and noncommutative generating series of polylogarithms, Automata, Combinatorics & Geometry, World Multi-conf. on Systemics, Cybernetics & Informatics, Florida, 2003.
[44] V. Hoang Ngoc Minh. Shuffle algebra and differential Galois group of colored polylogarithms, Nuclear Physics B, 135 (2004), pp. 220-224. | DOI | MR
[45] V. Hoang Ngoc Minh. Algebraic Combinatoric Aspects of Asymptotic Analysis of Nonlinear Dynamical System with Singular Inputs, Acta Academiae Aboensis, Ser. B, Vol. 67, no. 2, (2007), pp. 117-126.
[46] V. Hoang Ngoc Minh. On a conjecture by Pierre Cartier about a group of associators, Acta Math. Vietnamica (2013), 38, Issue 3, 339-398. | DOI | MR | Zbl
[47] V. Hoang Ngoc Minh. Structure of polyzetas and Lyndon words, Vietnamese Math. J. (2013), 41, Issue 4, 409-450. | DOI | MR | Zbl
[48] M. Hoffman. Quasi-shuffle products, J. Alg. Combin. 11 (1) (2000) 49–68. | MR | Zbl
[49] D. Knutson.
[50] J.A. Lappo-Danilevsky. Théorie des systèmes des équations différentielles linéaires, Chelsea, New York, 1953. | Zbl
[51] A. Lascoux. Fonctions symétriques, journal électronique du Séminaire Lotharingien de Combinatoire, B08e, (1983).
[52] T.Q.T. Lê, J. Murakami. Kontsevich’s integral for Kauffman polynomial, Nagoya Math., pp 39-65, 1996. | DOI | MR | Zbl
[53] M. Lothaire. Combinatorics on Words, Encyclopedia of Mathematics and its Applications, Addison-Wesley, 1983.
[54] W. Magnus. On the exponential solution of differential equations for a linear operator., AC on Pure and App. Math., VII:649–673, 1954. | DOI | MR | Zbl
[55] G. Racinet. Séries génératrices non-commutatives de polyzêtas et associateurs de Drinfel’d, Ph. D., Amiens, 2000.
[56] R. Ree. Lie elements and an algebra associated with shuffles Ann. Math 68 210–220, 1958. | DOI | MR | Zbl
[57] C. Reutenauer. Free Lie Algebras, London Math. Soc. Monographs (1993). | Zbl
[58] G. Viennot. Algèbres de Lie libres et monoïdes libres, Lecture Notes in Mathematics, Springer-Verlag, 691, 1978. | Zbl
[59] D. Zagier. Values of zeta functions and their applications, in “First European Congress of Mathematics”, vol. 2, Birkhäuser, pp. 497-512, 1994. | DOI | Zbl
- On the Kernels of the Zeta Polymorphism, Lie Theory and Its Applications in Physics, Volume 473 (2025), p. 443 | DOI:10.1007/978-981-97-6453-2_37
- On the Representative Series, Journal of Physics: Conference Series, Volume 2912 (2024) no. 1, p. 012013 | DOI:10.1088/1742-6596/2912/1/012013
- Demi-shuffle duals of Magnus polynomials in a free associative algebra, Algebraic Combinatorics, Volume 6 (2023) no. 4, p. 929 | DOI:10.5802/alco.287
- On the solutions of universal differential equation, Journal of Physics: Conference Series, Volume 2667 (2023) no. 1, p. 012021 | DOI:10.1088/1742-6596/2667/1/012021
- Towards a Theory of Domains for Harmonic Functions and its Symbolic Counterpart, Mathematics in Computer Science, Volume 17 (2023) no. 1 | DOI:10.1007/s11786-022-00552-5
- Families of eulerian functions involved in regularization of divergent polyzetas, Publications mathématiques de Besançon. Algèbre et théorie des nombres (2023), p. 5 | DOI:10.5802/pmb.47
Cité par 6 documents. Sources : Crossref