We show that for a simple compact Lie group, the infinitesimal subgroup is bi-interpretable with a real closed convexly valued field. We deduce that for an infinite definably compact group definable in an o-minimal expansion of a field, is bi-interpretable with the disjoint union of a (possibly trivial) -vector space and finitely many (possibly zero) real closed valued fields. We also describe the isomorphisms between such infinitesimal subgroups, and along the way prove that every definable field in a real closed convexly valued field is definably isomorphic to .
Révisé le :
Accepté le :
Publié le :
Mots clés : Model Theory, Compact Lie Group, Infinitesimal Subgroup, O-Minimality, Bi-interpretation, Valued Field
@article{CML_2019__11_2_3_0, author = {Bays, Martin and Peterzil, Ya{\textquoteright}acov}, title = {Definability in the group of infinitesimals of a compact {Lie} group}, journal = {Confluentes Mathematici}, pages = {3--23}, publisher = {Institut Camille Jordan}, volume = {11}, number = {2}, year = {2019}, doi = {10.5802/cml.58}, language = {en}, url = {http://www.numdam.org/articles/10.5802/cml.58/} }
TY - JOUR AU - Bays, Martin AU - Peterzil, Ya’acov TI - Definability in the group of infinitesimals of a compact Lie group JO - Confluentes Mathematici PY - 2019 SP - 3 EP - 23 VL - 11 IS - 2 PB - Institut Camille Jordan UR - http://www.numdam.org/articles/10.5802/cml.58/ DO - 10.5802/cml.58 LA - en ID - CML_2019__11_2_3_0 ER -
%0 Journal Article %A Bays, Martin %A Peterzil, Ya’acov %T Definability in the group of infinitesimals of a compact Lie group %J Confluentes Mathematici %D 2019 %P 3-23 %V 11 %N 2 %I Institut Camille Jordan %U http://www.numdam.org/articles/10.5802/cml.58/ %R 10.5802/cml.58 %G en %F CML_2019__11_2_3_0
Bays, Martin; Peterzil, Ya’acov. Definability in the group of infinitesimals of a compact Lie group. Confluentes Mathematici, Tome 11 (2019) no. 2, pp. 3-23. doi : 10.5802/cml.58. http://www.numdam.org/articles/10.5802/cml.58/
[1] o-minimal spectra, infinitesimal subgroups and cohomology, J. Symbolic Logic, Volume 72 (2007) no. 4, pp. 1177-1193 | DOI | MR | Zbl
[2] Lie groups and Lie algebras. Chapters 1–3, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989, xviii+450 pages (Translated from the French, Reprint of the 1975 edition) | DOI | MR | Zbl
[3] Sur les représentations linéaires des groupes clos, Comment. Math. Helv., Volume 2 (1930) no. 1, pp. 269-283 | DOI | MR | Zbl
[4] Real closed rings. II. Model theory, Ann. Pure Appl. Logic, Volume 25 (1983) no. 3, pp. 213-231 | DOI | MR | Zbl
[5] Commutators of small elements in compact semisimple groups and Lie algebras, J. Lie Theory, Volume 26 (2016) no. 3, pp. 683-690 | MR | Zbl
[6] Representation theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991, xvi+551 pages | DOI | MR | Zbl
[7] On central extensions and definably compact groups in o-minimal structures, J. Algebra, Volume 327 (2011), pp. 71-106 | DOI | MR | Zbl
[8] Valued fields, metastable groups (2018) | arXiv | DOI | MR | Zbl
[9] Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser Boston, Inc., Boston, MA, 2002, xviii+812 pages | MR | Zbl
[10] Weakly o-minimal structures and real closed fields, Trans. Amer. Math. Soc., Volume 352 (2000) no. 12, pp. 5435-5483 | DOI | MR | Zbl
[11] Type-definable and invariant groups in o-minimal structures, J. Symbolic Logic, Volume 72 (2007) no. 1, pp. 67-80 | DOI | MR | Zbl
[12] Imaginaries in real closed valued fields, Ann. Pure Appl. Logic, Volume 139 (2006) no. 1-3, pp. 230-279 | DOI | MR | Zbl
[13] Some model theory of compact Lie groups, Trans. Amer. Math. Soc., Volume 326 (1991) no. 1, pp. 453-463 | DOI | MR | Zbl
[14] Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990, xx+328 pages (Translated from the Russian and with a preface by D. A. Leites) | DOI | MR | Zbl
[15] On groups and rings definable in o-minimal expansions of real closed fields, Bull. London Math. Soc., Volume 28 (1996) no. 1, pp. 7-14 | DOI | MR | Zbl
[16] Definably simple groups in o-minimal structures, Trans. Amer. Math. Soc., Volume 352 (2000) no. 10, pp. 4397-4419 | DOI | MR | Zbl
[17] Simple algebraic and semialgebraic groups over real closed fields, Trans. Amer. Math. Soc., Volume 352 (2000) no. 10, pp. 4421-4450 | DOI | MR | Zbl
[18] A trichotomy theorem for o-minimal structures, Proc. London Math. Soc. (3), Volume 77 (1998) no. 3, pp. 481-523 | DOI | MR | Zbl
[19] Definable compactness and definable subgroups of o-minimal groups, J. London Math. Soc. (2), Volume 59 (1999) no. 3, pp. 769-786 | DOI | MR | Zbl
[20] On groups and fields definable in -minimal structures, J. Pure Appl. Algebra, Volume 53 (1988) no. 3, pp. 239-255 | DOI | MR | Zbl
[21] On fields definable in , Arch. Math. Logic, Volume 29 (1989) no. 1, pp. 1-7 | DOI | MR | Zbl
[22] Type-definability, compact Lie groups, and o-minimality, J. Math. Log., Volume 4 (2004) no. 2, pp. 147-162 | DOI | MR | Zbl
[23] MM. Borel, Tits, Zil’ber et le Général Nonsense, J. Symbolic Logic, Volume 53 (1988) no. 1, pp. 124-131 | DOI | MR | Zbl
[24] Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998, x+180 pages | DOI | MR | Zbl
[25] Stetigkeitssätze für halbeinfache Liesche Gruppen, Math. Z., Volume 36 (1933) no. 1, pp. 780-786 | DOI | MR | Zbl
[26] Quantum theory, groups and representations, Springer, Cham, 2017, xxii+668 pages | DOI | MR | Zbl
Cité par Sources :