Prompted by the Mathieu Moonshine observation, we identify a pair of 45-dimensional vector spaces of states that account for the first order term in the massive sector of the elliptic genus of K3 in every -orbifold CFT on K3. These generic states are uniquely characterized by the fact that the action of every geometric symmetry group of a -orbifold CFT yields a well-defined faithful representation on them. Moreover, each such representation is obtained by restriction of the -dimensional irreducible representation of the Mathieu group constructed by Margolin. Thus we provide a piece of evidence for Mathieu Moonshine explicitly from SCFTs on K3.
The -dimensional irreducible representation of exhibits a twist, which we prove can be undone in the case of -orbifold CFTs on K3 for all geometric symmetry groups. This twist however cannot be undone for the combined symmetry group that emerges from surfing the moduli space of Kummer K3s. We conjecture that in general, the untwisted representations are exclusively those of geometric symmetry groups in some geometric interpretation of a CFT on K3. In that light, the twist appears as a representation theoretic manifestation of the maximality constraints in Mukai’s classification of geometric symmetry groups of K3.
Révisé le :
Accepté le :
Publié le :
@article{CML_2015__7_1_83_0, author = {Taormina, Anne and Wendland, Katrin}, title = {A twist in the $M_{24}$ moonshine story}, journal = {Confluentes Mathematici}, pages = {83--113}, publisher = {Institut Camille Jordan}, volume = {7}, number = {1}, year = {2015}, doi = {10.5802/cml.19}, language = {en}, url = {http://www.numdam.org/articles/10.5802/cml.19/} }
TY - JOUR AU - Taormina, Anne AU - Wendland, Katrin TI - A twist in the $M_{24}$ moonshine story JO - Confluentes Mathematici PY - 2015 SP - 83 EP - 113 VL - 7 IS - 1 PB - Institut Camille Jordan UR - http://www.numdam.org/articles/10.5802/cml.19/ DO - 10.5802/cml.19 LA - en ID - CML_2015__7_1_83_0 ER -
Taormina, Anne; Wendland, Katrin. A twist in the $M_{24}$ moonshine story. Confluentes Mathematici, Tome 7 (2015) no. 1, pp. 83-113. doi : 10.5802/cml.19. http://www.numdam.org/articles/10.5802/cml.19/
[1] O. Alvarez, T.P. Killingback, M. Mangano, and P. Windey. String theory and loop space index theorems, Comm. Math. Phys. 111:1–12, 1987.
[2] P.S. Aspinwall and D.R. Morrison. String theory on surfaces, in: Mirror symmetry II, B. Greene and S.T. Yau, eds., AMS, 1994, pp. 703–716; hep-th/9404151.
[3] J.H. Conway, R.T. Curtis, S.P. Norton, R.W. Parker, and R.A. Wilson. Atlas of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups, with computational assistance from J. G. Thackray.
[4] M.C.N. Cheng. K3 surfaces, dyons, and the Mathieu group , Commun. Number Theory Phys. 4:623, 2010; arXiv:1005.5415[hep-th].
[5] A. M. Cohen. Finite complex reflection groups, Ann. Sci. École Norm. Sup., 4:379, 1976.
[6] A. Dabholkar, S. Murthy and D. Zagier. Quantum black holes, wall crossing and mock modular forms; arXiv:1208.4074 [hep-th].
[7] T. Eguchi and K. Hikami. Note on Twisted Elliptic Genus of K3 Surface, Phys. Lett. B694:446–455, 2011; arXiv1008.4924 [hep-th].
[8] Tohru Eguchi, Hirosi Ooguri, and Yuji Tachikawa. Notes on K3 surface and the Mathieu group , Exper. Math. 20:91–96, 2011; arXiv:1004.0956 [hep-th].
[9] T. Eguchi, H. Ooguri, A. Taormina, and S.-K. Yang. Superconformal algebras and string compactification on manifolds with holonomy, Nucl. Phys. B315:193–221, 1989.
[10] T. Eguchi and A. Taormina. Extended superconformal algebras and string compactifications, in: Trieste School 1988: Superstrings, pp. 167–188.
[11] J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert. Defect lines, dualities, and generalised orbifolds, in: Proc. XVIth ICMP (2010), World Sci. Publ., Hackensack NJ, pp. 608–613.
[12] T. Gannon. Much ado about Mathieu; arXiv:1211.5531 [math.RT].
[13] M.R. Gaberdiel, S. Hohenegger, and R. Volpato. Mathieu moonshine in the elliptic genus of K3, J. High Ener. Phys. 1010:062, 2010; arXiv:1008.3778 [hep-th].
[14] —. Mathieu twining characters for K3, J. High Ener. Phys. 1009:058, 2010; arXiv:1006.0221 [hep-th].
[15] M.R. Gaberdiel, S. Hohenegger and R. Volpato. Symmetries of K3 and sigma models, Comm. Numb. Th. Phys. 6:1–50, 2012.
[16] M.R. Gaberdiel, D. Persson, H. Ronellenfitsch, and R. Volpato. Generalised Mathieu Moonshine; arXiv:1211.7074 [hep-th].
[17] M.R. Gaberdiel, D. Persson, and R. Volpato. Generalised Moonshine and Holomorphic Orbifolds; arXiv:1302.5425 [hep-th].
[18] V. Kac. Vertex algebras for beginners, University Lecture Series 10, AMS 1998.
[19] A. Kapustin and D. Orlov. Vertex algebras, mirror symmetry, and D-branes: the case of complex tori, Comm. Math. Phys. 233:79–136, 2003.
[20] F. Klein. Über die Transformation siebenter Ordnung der elliptische Funktionen. in: Gesammelte Math. Abhandlungen III, 1878, p. 90.
[21] S. Kondo. Niemeier lattices, Mathieu groups and finite groups of symplectic automorphisms of K3 surfaces, Duke Math. J. 92:593–603, 1998, Appendix by S. Mukai.
[22] W. Lerche, C. Vafa, and N.P. Warner. Chiral rings in superconformal theories, Nucl. Phys. B324:427–474, 1989.
[23] R. S. Margolin. A geometry for , J. Algebra 156:370, 1993.
[24] S. Mukai. Finite groups of automorphisms of surfaces and the Mathieu group, Invent. Math. 94:183–221, 1988.
[25] W. Nahm and K. Wendland. A hiker’s guide to – Aspects of superconformal field theory with central charge , Commun. Math. Phys. 216:85–138, 2001; hep-th/9912067.
[26] H. Ooguri. Superconformal symmetry and geometry of Ricci flat Kähler manifolds, Int. J. Mod. Phys. A4:4303, 1989.
[27] A. Taormina and K. Wendland. The overarching finite symmetry group of Kummer surfaces in the Mathieu group , J. High Ener. Phys. 08:125, 2013; arXiv:1107.3834 [hep-th].
[28] —. Symmetry-surfing the moduli space of Kummer K3s; arXiv:1303.2931 [hep-th].
[29] K. Wendland. Moduli spaces of unitary conformal field theories. Ph.D. thesis, University of Bonn, 2000.
[30] K. Wendland. On the geometry of singularities in quantum field theory, in: Proc. of the ICM 2010, Hyderabad, Hindustan Book Agency, 2010, pp. 2144-2170.
[31] K. Wendland. Snapshots of conformal field theory; in: Mathematical Aspects of Quantum Field Theories, D. Calaque and Th. Strobl, eds., Mathematical Physics Studies, Springer 2015, pp. 89–129; arXiv:1404.3108 [hep-th].
[32] R. A. Wilson. The geometry of the Hall-Janko group as quaternionic reflection group, Geom. Dedic. 20:157, 1986.
[33] E. Witten. Elliptic genera and quantum field theory, Commun. Math. Phys. 109:525–536, 1987.
Cité par Sources :