We consider the problem of estimating the density of a determinantal process from the observation of independent copies of it. We use an aggregation procedure based on robust testing to build our estimator. We establish non-asymptotic risk bounds with respect to the Hellinger loss and deduce, when goes to infinity, uniform rates of convergence over classes of densities of interest.
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/cml.1
Mots clés : Determinantal process - Density estimation- Oracle inequality - Hellinger distance
@article{CML_2013__5_1_3_0, author = {Baraud, Yannick}, title = {Estimation of the density of a determinantal process}, journal = {Confluentes Mathematici}, pages = {3--23}, publisher = {Institut Camille Jordan}, volume = {5}, number = {1}, year = {2013}, doi = {10.5802/cml.1}, language = {en}, url = {http://www.numdam.org/articles/10.5802/cml.1/} }
Baraud, Yannick. Estimation of the density of a determinantal process. Confluentes Mathematici, Tome 5 (2013) no. 1, pp. 3-23. doi : 10.5802/cml.1. http://www.numdam.org/articles/10.5802/cml.1/
[1] Estimation adaptative par selection de partitions en rectangles dyadiques, University Paris XI (2009) (Ph. D. Thesis)
[2] An introduction to random matrices, Cambridge Studies in Advanced Mathematics, 118, Cambridge University Press, Cambridge, 2010, xiv+492 pages
[3] Algebraic aspects of increasing subsequences, Duke Math. J., Volume 109 (2001) no. 1, pp. 1-65 | DOI
[4] Estimator selection with respect to Hellinger-type risks, Probab. Theory Related Fields, Volume 151 (2011) no. 1-2, pp. 353-401 | DOI
[5] Model selection via testing: an alternative to (penalized) maximum likelihood estimators, Ann. Inst. H. Poincaré Probab. Statist., Volume 42 (2006) no. 3, pp. 273-325 | DOI
[6] On adding a list of numbers (and other one-dependent determinantal processes), Bull. Amer. Math. Soc. (N.S.), Volume 47 (2010) no. 4, pp. 639-670 | DOI
[7] On some multiple integrals involving determinants, J. Indian Math. Soc. (N.S.), Volume 19 (1955), p. 133-151 (1956)
[8] Wavelet characterizations for anisotropic Besov spaces, Appl. Comput. Harmon. Anal., Volume 12 (2002) no. 2, pp. 179-208 | DOI
[9] Determinantal processes and independence, Probab. Surv., Volume 3 (2006), pp. 206-229 | DOI
[10] Zeros of Gaussian analytic functions and determinantal point processes, University Lecture Series, 51, American Mathematical Society, Providence, RI, 2009, x+154 pages
[11] Determinantal probability measures, Publ. Math. Inst. Hautes Études Sci. (2003) no. 98, pp. 167-212 | DOI
[12] Algebra, Chelsea Publishing Co., New York, 1988, xx+626 pages
Cité par Sources :