[Sur quelques inégalités pour la projection optionnelle et la projection prévisible d’un processus de paramètre discret]
Soit un espace de probabilité non atomique. Si est une filtration de et si est un processus stochastique sur tel que est intégrable pour tout , la projection optionnelle de est définie par |.] Étant donné un espace de fonction de Banach sur et , on laisse désigner l’espace de Banach constitué de tous les processus tels que , et on laisse pour . L’un des principaux résultats donne une condition nécessaire et suffisante sur pour que l’inégalité soit valable pour tout .
Let be a nonatomic probability space. If is a filtration of and if is a stochastic process on such that is integrable for all , the optional projection of is defined by |.] Given a Banach function space over and , let denote the Banach space consisting of all processes such that , and let for . One of the main results gives a necessary and sufficient condition on for the inequality to be valid for all .
Mots clés : Optional projection, Predictable projection, Banach function space
@article{AMBP_2022__29_1_149_0, author = {Kikuchi, Masato}, title = {On some inequalities for the optional projection and the predictable projection of a discrete parameter process}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {149--185}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {29}, number = {1}, year = {2022}, doi = {10.5802/ambp.409}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.409/} }
TY - JOUR AU - Kikuchi, Masato TI - On some inequalities for the optional projection and the predictable projection of a discrete parameter process JO - Annales mathématiques Blaise Pascal PY - 2022 SP - 149 EP - 185 VL - 29 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.409/ DO - 10.5802/ambp.409 LA - en ID - AMBP_2022__29_1_149_0 ER -
%0 Journal Article %A Kikuchi, Masato %T On some inequalities for the optional projection and the predictable projection of a discrete parameter process %J Annales mathématiques Blaise Pascal %D 2022 %P 149-185 %V 29 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.409/ %R 10.5802/ambp.409 %G en %F AMBP_2022__29_1_149_0
Kikuchi, Masato. On some inequalities for the optional projection and the predictable projection of a discrete parameter process. Annales mathématiques Blaise Pascal, Tome 29 (2022) no. 1, pp. 149-185. doi : 10.5802/ambp.409. http://www.numdam.org/articles/10.5802/ambp.409/
[1] Lebesgue spaces with variable exponent on a probability space, Hiroshima Math. J., Volume 39 (2009) no. 2, pp. 207-216 | MR | Zbl
[2] Interpolation of operators, Pure and Applied Mathematics, 129, Academic Press Inc., 1988
[3] Indices of function spaces and their relationship to interpolation, Can. J. Math., Volume 21 (1969), pp. 1245-1254 | DOI | MR | Zbl
[4] Distribution function inequalities for martingales, Ann. Probab., Volume 1 (1973), pp. 19-42 | MR | Zbl
[5] Integral inequalities for convex functions of operators on martingales, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability Vol. II: Probability theory, University of California Press (1972), pp. 223-240 | Zbl
[6] Equimeasurable rearrangements of functions, Queen’s Papers in Pure and Applied Mathematics, 28, Queen’s University, 1971
[7] A general version of the fundamental theorem of asset pricing, Math. Ann., Volume 300 (1994) no. 3, pp. 463-520 | DOI | MR | Zbl
[8] An inequality for the predictable projection of an adapted process, Séminaire de Probabilités, XXIX (Lecture Notes in Mathematics), Volume 1613, Springer (1995), pp. 17-24 | DOI | Numdam | MR
[9] Probabilités et potentiel, Chapitres V á VIII : Théorie des martingales, Actualités Scientifiques et Industrielles, 1385, Hermann, 1980
[10] Constructive approximation, Grundlehren der Mathematischen Wissenschaften, 303, Springer, 1993 | DOI
[11] Some probabilistic inequalities with applications to functional analysis, Banach spaces (Mérida, 1992) (Contemporary Mathematics), Volume 144, American Mathematical Society (1993), pp. 53-67 | DOI | MR | Zbl
[12] Inequalities: a journey into linear analysis, Cambridge University Press, 2007
[13] Symmetric structures in Banach spaces, Mem. Am. Math. Soc., Volume 19 (1979) no. 217, pp. 1-298 | MR
[14] Boundedness and convergence of martingales in rearrangement-invariant function spaces, Arch. Math., Volume 75 (2000) no. 4, pp. 312-320 | DOI | MR | Zbl
[15] Characterization of Banach function spaces that preserve the Burkholder square-function inequality, Ill. J. Math., Volume 47 (2003) no. 3, pp. 867-882 | MR | Zbl
[16] New martingale inequalities in rearrangement-invariant function spaces, Proc. Edinb. Math. Soc., II. Ser., Volume 47 (2004) no. 3, pp. 633-657 | DOI | MR | Zbl
[17] On some mean oscillation inequalities for martingales, Publ. Mat., Barc., Volume 50 (2006) no. 1, pp. 167-189 | DOI | MR | Zbl
[18] Uniform boundedness of conditional expectation operators on a Banach function space, Math. Inequal. Appl., Volume 16 (2013) no. 2, pp. 483-499 | MR | Zbl
[19] On some martingale inequalities for mean oscillations in weak spaces, Ric. Mat., Volume 64 (2015) no. 1, pp. 137-165 | DOI | MR | Zbl
[20] On Doob’s inequality and Burkholder’s inequality in weak spaces, Collect. Math., Volume 67 (2016) no. 3, pp. 461-483 | DOI | MR | Zbl
[21] On martingale transform inequalities in certain quasi-Banach function spaces, Boll. Unione Mat. Ital., Volume 12 (2019) no. 3, pp. 485-514 | DOI | MR | Zbl
[22] Eigenvalue distribution of compact operators, Operator Theory: Advances and Applications, 16, Birkhäuser, 1986 | DOI | Zbl
[23] Interpolation of linear operators, Translations of Mathematical Monographs, 54, American Mathematical Society, 1982
[24] Une inégalité de martingales, Séminaire de Probabilités, XII (Lecture Notes in Mathematics), Volume 649, Springer (1978), pp. 134-137 | DOI | Numdam | Zbl
[25] Classical Banach spaces. II. Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Springer, 1979 | DOI
[26] Sharp estimate for a sequence and its predictable projection, Stat. Probab. Lett., Volume 104 (2015), pp. 82-86 | DOI | MR | Zbl
[27] Diffusions, Markov processes, and martingales. Vol. 1: Foundations, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1994
[28] Topics in harmonic analysis related to the Littlewood–Paley theory, Annals of Mathematics Studies, 63, Princeton University Press, 1970
Cité par Sources :