In this paper, we investigate the structure of the magic square C*-algebra of size 4. We show that a certain twisted crossed product of is isomorphic to the homogeneous C*-algebra . Using this result, we show that is isomorphic to the fixed point algebra of by a certain action. From this concrete realization of , we compute the K-groups of and their generators.
Mots clés : C*-algebra, magic square C*-algebra, twisted crossed product, K-theory
@article{AMBP_2022__29_1_99_0, author = {Katsura, Takeshi and Ogawa, Masahito and Takeuchi, Airi}, title = {On the magic square {C*-algebra} of size 4}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {99--148}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {29}, number = {1}, year = {2022}, doi = {10.5802/ambp.408}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.408/} }
TY - JOUR AU - Katsura, Takeshi AU - Ogawa, Masahito AU - Takeuchi, Airi TI - On the magic square C*-algebra of size 4 JO - Annales mathématiques Blaise Pascal PY - 2022 SP - 99 EP - 148 VL - 29 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.408/ DO - 10.5802/ambp.408 LA - en ID - AMBP_2022__29_1_99_0 ER -
%0 Journal Article %A Katsura, Takeshi %A Ogawa, Masahito %A Takeuchi, Airi %T On the magic square C*-algebra of size 4 %J Annales mathématiques Blaise Pascal %D 2022 %P 99-148 %V 29 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.408/ %R 10.5802/ambp.408 %G en %F AMBP_2022__29_1_99_0
Katsura, Takeshi; Ogawa, Masahito; Takeuchi, Airi. On the magic square C*-algebra of size 4. Annales mathématiques Blaise Pascal, Tome 29 (2022) no. 1, pp. 99-148. doi : 10.5802/ambp.408. http://www.numdam.org/articles/10.5802/ambp.408/
[1] Quantum groups acting on 4 points, J. Reine Angew. Math., Volume 626 (2009), pp. 75-114 | DOI | MR | Zbl
[2] Integration over the Pauli quantum group, J. Geom. Phys., Volume 58 (2008) no. 8, pp. 942-961 | DOI | MR | Zbl
[3] On the structure of quantum permutation groups, Proc. Am. Math. Soc., Volume 135 (2007) no. 1, pp. 21-29 | DOI | MR | Zbl
[4] Quantum subgroups of the compact quantum group , Bull. Lond. Math. Soc., Volume 46 (2014) no. 2, pp. 315-328 | DOI | MR | Zbl
[5] -algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88, American Mathematical Society, 2008 | Zbl
[6] The homology theory of quotient spaces of the spheres by the action of the finite groups, 2018 (Master thesis, Keio University)
[7] An introduction to -theory for -algebras, London Mathematical Society Student Texts, 49, Cambridge University Press, 2000
[8] On the structure of quantum automorphism groups, J. Reine Angew. Math., Volume 732 (2017), pp. 255-273 | DOI | MR | Zbl
[9] Quantum symmetry groups of finite spaces, Commun. Math. Phys., Volume 195 (1998) no. 1, pp. 195-211 | DOI | MR | Zbl
Cité par Sources :