The RFD and Kac quotients of the Hopf * -algebras of universal orthogonal quantum groups
Annales mathématiques Blaise Pascal, Tome 28 (2021) no. 2, pp. 141-155.

We determine the Kac quotient and the RFD (residually finite dimensional) quotient for the Hopf * -algebras associated to universal orthogonal quantum groups.

Publié le :
DOI : 10.5802/ambp.402
Classification : 16T05, 20G42
Mots clés : Hopf $^*$-algebra; RFD property; Kac quotient; universal orthogonal quantum groups
Das, Biswarup 1 ; Franz, Uwe 2 ; Skalski, Adam 3

1 Instytut Matematyczny, Uniwersytet Wrocławski, pl.Grunwaldzki 2/4, 50-384 Wrocław, Poland
2 Laboratoire de mathématiques de Besançon, Université de Bourgogne Franche-Comté, 16, route de Gray, 25 030 Besançon cedex, France
3 Institute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, 00–656 Warszawa, Poland
@article{AMBP_2021__28_2_141_0,
     author = {Das, Biswarup and Franz, Uwe and Skalski, Adam},
     title = {The {RFD} and {Kac} quotients of the {Hopf}$^*$-algebras of universal orthogonal quantum groups},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {141--155},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {28},
     number = {2},
     year = {2021},
     doi = {10.5802/ambp.402},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.402/}
}
TY  - JOUR
AU  - Das, Biswarup
AU  - Franz, Uwe
AU  - Skalski, Adam
TI  - The RFD and Kac quotients of the Hopf$^*$-algebras of universal orthogonal quantum groups
JO  - Annales mathématiques Blaise Pascal
PY  - 2021
SP  - 141
EP  - 155
VL  - 28
IS  - 2
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.402/
DO  - 10.5802/ambp.402
LA  - en
ID  - AMBP_2021__28_2_141_0
ER  - 
%0 Journal Article
%A Das, Biswarup
%A Franz, Uwe
%A Skalski, Adam
%T The RFD and Kac quotients of the Hopf$^*$-algebras of universal orthogonal quantum groups
%J Annales mathématiques Blaise Pascal
%D 2021
%P 141-155
%V 28
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.402/
%R 10.5802/ambp.402
%G en
%F AMBP_2021__28_2_141_0
Das, Biswarup; Franz, Uwe; Skalski, Adam. The RFD and Kac quotients of the Hopf$^*$-algebras of universal orthogonal quantum groups. Annales mathématiques Blaise Pascal, Tome 28 (2021) no. 2, pp. 141-155. doi : 10.5802/ambp.402. http://www.numdam.org/articles/10.5802/ambp.402/

[1] Banica, Teodor Théorie des représentations du groupe quantique compact libre O(n)., C. R. Math. Acad. Sci. Paris, Volume 322 (1996) no. 3, pp. 241-244 | Zbl

[2] Banica, Teodor Le groupe quantique compact libre U(n), Commun. Math. Phys., Volume 190 (1997) no. 1, pp. 143-172 | DOI | MR | Zbl

[3] Banica, Teodor Representations of compact quantum groups and subfactors, J. Reine Angew. Math., Volume 509 (1999), pp. 167-198 | DOI | MR | Zbl

[4] Banica, Teodor; Bichon, Julien Hopf images and inner faithful representations., Glasg. Math. J., Volume 52 (2010) no. 3, pp. 677-703 | DOI | MR | Zbl

[5] Banica, Teodor; Franz, Uwe; Skalski, Adam Idempotent states and the inner linearity property, Bull. Pol. Acad. Sci., Math., Volume 60 (2012) no. 2, pp. 123-132 | DOI | MR | Zbl

[6] Bhattacharya, Angshuman; Brannan, Michael; Chirvasitu, Alexandru; Wang, Shuzhou Property (T), property (F) and residual finiteness for discrete quantum groups, J. Noncommut. Geom., Volume 14 (2020) no. 2, pp. 567-589 | DOI | MR | Zbl

[7] Caspers, Martijn; Skalski, Adam On C * -completions of discrete quantum group rings, Bull. Lond. Math. Soc., Volume 51 (2019) no. 4, pp. 691-704 | DOI | MR | Zbl

[8] Chirvasitu, Alexandru Centers, cocenters and simple quantum groups, J. Pure Appl. Algebra, Volume 218 (2014) no. 8, pp. 1418-1430 | DOI | MR | Zbl

[9] Chirvasitu, Alexandru Residually finite quantum group algebras, J. Funct. Anal., Volume 268 (2015) no. 11, pp. 3508-3533 | DOI | MR | Zbl

[10] Chirvasitu, Alexandru Topological generation results for free unitary and orthogonal groups, Int. J. Math., Volume 31 (2020) no. 1, 2050003, 13 pages | DOI | MR | Zbl

[11] Dijkhuizen, Mathijs S.; Koornwinder, Tom H. CQG algebras: A direct algebraic approach to compact quantum groups, Lett. Math. Phys., Volume 32 (1994) no. 4, pp. 315-330 | DOI | MR | Zbl

[12] Klimyk, Anatoli; Schmüdgen, Konrad Quantum groups and their representations, Texts and Monographs in Physics, Springer, 1997, xix + 552 pages | DOI | Zbl

[13] Rijdt, An De Monoidal equivalence of compact quantum groups, Ph. D. Thesis, KU Leuven (2007) (available at https://perswww.kuleuven.be/~u0018768/students/derijdt-phd-thesis.pdf)

[14] Sołtan, Piotr M. Quantum Bohr compactification, Ill. J. Math., Volume 49 (2005) no. 4, pp. 1245-1270 | MR | Zbl

[15] Sołtan, Piotr M. Quantum Bohr compactification of discrete quantum groups (2006) (https://arxiv.org/abs/math/0604623)

[16] Tomatsu, Reiji A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Commun. Math. Phys., Volume 275 (2007) no. 1, pp. 271-296 | DOI | MR | Zbl

[17] Vaes, Stefaan; Vergnioux, Roland The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J., Volume 140 (2007) no. 1, pp. 35-84 | DOI | MR | Zbl

[18] VanDaele, Alfons; Wang, Shuzhou Universal quantum groups, Int. J. Math., Volume 7 (1996) no. 2, pp. 255-263 | DOI | MR | Zbl

[19] Wang, Shuzhou Free products of compact quantum groups, Commun. Math. Phys., Volume 167 (1995) no. 3, pp. 671-692 | DOI | MR | Zbl

[20] Wang, Shuzhou Structure and isomorphism classification of compact quantum groups A u (Q) and B u (Q), J. Oper. Theory, Volume 48 (2002) no. 3, pp. 573-583 | MR | Zbl

[21] Woronowicz, Stanisław L. Compact matrix pseudogroups, Commun. Math. Phys., Volume 111 (1987), pp. 613-665 | DOI | MR | Zbl

[22] Woronowicz, Stanisław L. Compact quantum groups, Quantum symmetries/ Symétries quantiques. Proceedings of the Les Houches summer school, Session LXIV, Les Houches, France, August 1 - September 8, 1995, North-Holland, 1998, pp. 845-884 | Zbl

Cité par Sources :