We determine the Kac quotient and the RFD (residually finite dimensional) quotient for the Hopf-algebras associated to universal orthogonal quantum groups.
Mots clés : Hopf $^*$-algebra; RFD property; Kac quotient; universal orthogonal quantum groups
@article{AMBP_2021__28_2_141_0, author = {Das, Biswarup and Franz, Uwe and Skalski, Adam}, title = {The {RFD} and {Kac} quotients of the {Hopf}$^*$-algebras of universal orthogonal quantum groups}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {141--155}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {28}, number = {2}, year = {2021}, doi = {10.5802/ambp.402}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.402/} }
TY - JOUR AU - Das, Biswarup AU - Franz, Uwe AU - Skalski, Adam TI - The RFD and Kac quotients of the Hopf$^*$-algebras of universal orthogonal quantum groups JO - Annales mathématiques Blaise Pascal PY - 2021 SP - 141 EP - 155 VL - 28 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.402/ DO - 10.5802/ambp.402 LA - en ID - AMBP_2021__28_2_141_0 ER -
%0 Journal Article %A Das, Biswarup %A Franz, Uwe %A Skalski, Adam %T The RFD and Kac quotients of the Hopf$^*$-algebras of universal orthogonal quantum groups %J Annales mathématiques Blaise Pascal %D 2021 %P 141-155 %V 28 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.402/ %R 10.5802/ambp.402 %G en %F AMBP_2021__28_2_141_0
Das, Biswarup; Franz, Uwe; Skalski, Adam. The RFD and Kac quotients of the Hopf$^*$-algebras of universal orthogonal quantum groups. Annales mathématiques Blaise Pascal, Tome 28 (2021) no. 2, pp. 141-155. doi : 10.5802/ambp.402. http://www.numdam.org/articles/10.5802/ambp.402/
[1] Théorie des représentations du groupe quantique compact libre ., C. R. Math. Acad. Sci. Paris, Volume 322 (1996) no. 3, pp. 241-244 | Zbl
[2] Le groupe quantique compact libre , Commun. Math. Phys., Volume 190 (1997) no. 1, pp. 143-172 | DOI | MR | Zbl
[3] Representations of compact quantum groups and subfactors, J. Reine Angew. Math., Volume 509 (1999), pp. 167-198 | DOI | MR | Zbl
[4] Hopf images and inner faithful representations., Glasg. Math. J., Volume 52 (2010) no. 3, pp. 677-703 | DOI | MR | Zbl
[5] Idempotent states and the inner linearity property, Bull. Pol. Acad. Sci., Math., Volume 60 (2012) no. 2, pp. 123-132 | DOI | MR | Zbl
[6] Property (T), property (F) and residual finiteness for discrete quantum groups, J. Noncommut. Geom., Volume 14 (2020) no. 2, pp. 567-589 | DOI | MR | Zbl
[7] On -completions of discrete quantum group rings, Bull. Lond. Math. Soc., Volume 51 (2019) no. 4, pp. 691-704 | DOI | MR | Zbl
[8] Centers, cocenters and simple quantum groups, J. Pure Appl. Algebra, Volume 218 (2014) no. 8, pp. 1418-1430 | DOI | MR | Zbl
[9] Residually finite quantum group algebras, J. Funct. Anal., Volume 268 (2015) no. 11, pp. 3508-3533 | DOI | MR | Zbl
[10] Topological generation results for free unitary and orthogonal groups, Int. J. Math., Volume 31 (2020) no. 1, 2050003, 13 pages | DOI | MR | Zbl
[11] CQG algebras: A direct algebraic approach to compact quantum groups, Lett. Math. Phys., Volume 32 (1994) no. 4, pp. 315-330 | DOI | MR | Zbl
[12] Quantum groups and their representations, Texts and Monographs in Physics, Springer, 1997, xix + 552 pages | DOI | Zbl
[13] Monoidal equivalence of compact quantum groups, Ph. D. Thesis, KU Leuven (2007) (available at https://perswww.kuleuven.be/~u0018768/students/derijdt-phd-thesis.pdf)
[14] Quantum Bohr compactification, Ill. J. Math., Volume 49 (2005) no. 4, pp. 1245-1270 | MR | Zbl
[15] Quantum Bohr compactification of discrete quantum groups (2006) (https://arxiv.org/abs/math/0604623)
[16] A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Commun. Math. Phys., Volume 275 (2007) no. 1, pp. 271-296 | DOI | MR | Zbl
[17] The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J., Volume 140 (2007) no. 1, pp. 35-84 | DOI | MR | Zbl
[18] Universal quantum groups, Int. J. Math., Volume 7 (1996) no. 2, pp. 255-263 | DOI | MR | Zbl
[19] Free products of compact quantum groups, Commun. Math. Phys., Volume 167 (1995) no. 3, pp. 671-692 | DOI | MR | Zbl
[20] Structure and isomorphism classification of compact quantum groups and , J. Oper. Theory, Volume 48 (2002) no. 3, pp. 573-583 | MR | Zbl
[21] Compact matrix pseudogroups, Commun. Math. Phys., Volume 111 (1987), pp. 613-665 | DOI | MR | Zbl
[22] Compact quantum groups, Quantum symmetries/ Symétries quantiques. Proceedings of the Les Houches summer school, Session LXIV, Les Houches, France, August 1 - September 8, 1995, North-Holland, 1998, pp. 845-884 | Zbl
Cité par Sources :