On approximation properties of semidirect products of groups
[Sur les propriétés d’approximation des produits semi-directs des groupes]
Annales mathématiques Blaise Pascal, Tome 27 (2020) no. 1, pp. 125-130.

Soit une classe de groupes fermée par rapport aux extensions (scindées) avec un noyau fini et par rapport aux groupes multi-résiduellement . Nous montrons que contient toutes les extensions (scindées) de type {finiment engendré résiduellement fini}–par–. Nous obtenons en corollaire qu’une extension scindée avec un noyau finiment engendré résiduellement fini et un quotient surjonctif est surjonctive. Cela restait inconnu, même pour les produits directs d’un groupe surjonctif avec les entiers Z.

Let be a class of groups closed under taking (split) extensions with finite kernel and fully residually –groups. We prove that contains all (split) {finitely generated residually finite }–by– groups. It follows that a split extension with a finitely generated residually finite kernel and a surjunctive quotient is surjunctive. This remained unknown even for direct products of a surjunctive group with the integers Z.

Publié le :
DOI : 10.5802/ambp.386
Classification : 20E26, 20E22, 20E25, 37B05, 37B10
Mots clés : Residually finite groups, surjunctive and sofic groups, semidirect product
Arzhantseva, Goulnara 1 ; Gal, Światosław R. 2

1 Universität Wien Fakultät für Mathematik Oskar–Morgenstern–Platz 1, 1090 Wien, Austria
2 Uniwersytet Wrocławski Instytut Matematyczny pl. Grunwaldzki 2/4, 50–384 Wrocław, Poland
@article{AMBP_2020__27_1_125_0,
     author = {Arzhantseva, Goulnara and Gal, \'Swiatos{\l}aw R.},
     title = {On approximation properties of semidirect products of groups},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {125--130},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {27},
     number = {1},
     year = {2020},
     doi = {10.5802/ambp.386},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.386/}
}
TY  - JOUR
AU  - Arzhantseva, Goulnara
AU  - Gal, Światosław R.
TI  - On approximation properties of semidirect products of groups
JO  - Annales mathématiques Blaise Pascal
PY  - 2020
SP  - 125
EP  - 130
VL  - 27
IS  - 1
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.386/
DO  - 10.5802/ambp.386
LA  - en
ID  - AMBP_2020__27_1_125_0
ER  - 
%0 Journal Article
%A Arzhantseva, Goulnara
%A Gal, Światosław R.
%T On approximation properties of semidirect products of groups
%J Annales mathématiques Blaise Pascal
%D 2020
%P 125-130
%V 27
%N 1
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.386/
%R 10.5802/ambp.386
%G en
%F AMBP_2020__27_1_125_0
Arzhantseva, Goulnara; Gal, Światosław R. On approximation properties of semidirect products of groups. Annales mathématiques Blaise Pascal, Tome 27 (2020) no. 1, pp. 125-130. doi : 10.5802/ambp.386. http://www.numdam.org/articles/10.5802/ambp.386/

[1] Arzhantseva, Goulnara; Berlai, Federico; Finn-Sell, Martin; Glebsky, Lev Unrestricted wreath products and sofic groups, Int. J. Algebra Comput., Volume 29 (2019) no. 2, pp. 343-355 | DOI | MR | Zbl

[2] Capraro, Valerio; Lupini, Martino Introduction to sofic and hyperlinear groups and Connes’ embedding conjecture, Lecture Notes in Mathematics, 2136, Springer, 2015, viii+151 pages (with an appendix by Vladimir Pestov) | DOI | MR | Zbl

[3] Ceccherini-Silberstein, Tullio; Coornaert, Michel Cellular automata and groups, Springer Monographs in Mathematics, Springer, 2010, xx+439 pages | DOI | MR | Zbl

[4] Ceccherini-Silberstein, Tullio; Coornaert, Michel Surjunctivity and Reversibility of Cellular Automata over Concrete Categories, Trends in Harmonic Analysis (Springer INdAM Series), Volume 3, Springer, 2013, pp. 91-133 | DOI | Zbl

[5] Champetier, Christophe; Guirardel, Vincent Limit groups as limits of free groups, Isr. J. Math., Volume 146 (2005), pp. 1-75 | DOI | MR | Zbl

[6] Deligne, Pierre Extensions centrales non résiduellement finies de groupes arithmétiques, C. R. Math. Acad. Sci. Paris, Volume 287 (1978) no. 4, p. A203-A208 | MR | Zbl

[7] Gottschalk, Walter Some general dynamical notions, Recent advances in topological dynamics (Lecture Notes in Mathematics), Volume 318, Springer, 1973, pp. 120-125 | MR | Zbl

[8] Gromov, Mikhael Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc., Volume 1 (1999) no. 2, pp. 109-197 | DOI | MR | Zbl

[9] Hill, Richard M. Non-residually finite extensions of arithmetic groups, Res. Number Theory, Volume 5 (2019) no. 1, 2, 27 pages | DOI | MR | Zbl

[10] Malʼcev, Anatoliĭ On homomorphisms onto finite groups, Ivanov. Gos. Ped. Inst. Uč. Zap. Fiz.-Mat. Fak., Volume 18 (1956), pp. 49-60

[11] Millson, John J. Real vector bundles with discrete structure group, Topology, Volume 18 (1979) no. 1, pp. 83-89 | DOI | MR | Zbl

[12] Pestov, Vladimir G. Hyperlinear and sofic groups: a brief guide, Bull. Symb. Log., Volume 14 (2008) no. 4, pp. 449-480 | DOI | MR | Zbl

[13] Vershik, Anatoliĭ M.; Gordon, Evgeniĭ I. Groups that are locally embeddable in the class of finite groups, Algebra Anal., Volume 9 (1997) no. 1, pp. 71-97 | MR | Zbl

[14] Weiss, Benjamin Sofic groups and dynamical systems, Sankhyā, Ser. A, Volume 62 (2000) no. 3, pp. 350-359 Ergodic theory and harmonic analysis (Mumbai, 1999) | MR | Zbl

Cité par Sources :