Les moyennes sont des invariants definis sur la cohomologie des groupes de Lie. Nous démontrons que les moyennes dans les groupes abéliens et les groupes d’Heisenberg sont nulles. Ce résultat complète des travaux précédents et montre que la cohomologie est nulle pour les groupes de Lie étudiés.
Averages are invariants defined on the cohomology of Lie groups. We prove that they vanish for abelian and Heisenberg groups. This result completes work by other authors and allows to show that the cohomology vanishes in these cases.
Keywords: Heisenberg groups, Rumin complex, $\ell ^{p}$ cohomology, parabolicity
Mot clés : Heisenberg groups, Rumin complex, $\ell ^{p}$ cohomology, parabolicity
@article{AMBP_2019__26_1_81_0, author = {Pansu, Pierre and Tripaldi, Francesca}, title = {Averages and the $\ell ^{q,1}$ cohomology of {Heisenberg} groups}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {81--100}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {26}, number = {1}, year = {2019}, doi = {10.5802/ambp.384}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.384/} }
TY - JOUR AU - Pansu, Pierre AU - Tripaldi, Francesca TI - Averages and the $\ell ^{q,1}$ cohomology of Heisenberg groups JO - Annales mathématiques Blaise Pascal PY - 2019 SP - 81 EP - 100 VL - 26 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.384/ DO - 10.5802/ambp.384 LA - en ID - AMBP_2019__26_1_81_0 ER -
%0 Journal Article %A Pansu, Pierre %A Tripaldi, Francesca %T Averages and the $\ell ^{q,1}$ cohomology of Heisenberg groups %J Annales mathématiques Blaise Pascal %D 2019 %P 81-100 %V 26 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.384/ %R 10.5802/ambp.384 %G en %F AMBP_2019__26_1_81_0
Pansu, Pierre; Tripaldi, Francesca. Averages and the $\ell ^{q,1}$ cohomology of Heisenberg groups. Annales mathématiques Blaise Pascal, Tome 26 (2019) no. 1, pp. 81-100. doi : 10.5802/ambp.384. http://www.numdam.org/articles/10.5802/ambp.384/
[1] Poincaré and Sobolev inequalities for differential forms in Heisenberg groups (2017) (https://arxiv.org/abs/1711.09786)
[2] -Poincaré inequalities for differential forms on Euclidean spaces and Heisenberg groups (2019) (https://arxiv.org/abs/1902.04819)
[3] Compensated compactness in the contact complex of Heisenberg groups, Indiana Univ. Math. J., Volume 57 (2008) no. 1, pp. 133-185 | DOI | MR | Zbl
[4] New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., Volume 009 (2007) no. 2, pp. 277-315 | DOI | MR | Zbl
[5] Subelliptic Bourgain–Brezis estimates on groups, Math. Res. Lett., Volume 16 (2009) no. 2-3, pp. 487-501 | DOI | MR | Zbl
[6] Cup-products in -cohomology: discretization and quasi-isometry invariance (2017) (https://arxiv.org/abs/1702.04984)
[7] On the cohomology of Carnot groups (to appear in Ann. Henri Lebesgue) | Zbl
[8] The connectivity at infinity of a manifold and -Sobolev inequalities, Expo. Math., Volume 32 (2014) no. 4, pp. 365-383 | DOI | MR | Zbl
[9] Differential forms on contact manifolds, J. Differ. Geom., Volume 39 (1994) no. 2, pp. 281-330 | MR | Zbl
Cité par Sources :