Holomorphic extension of the de Gennes function
Annales mathématiques Blaise Pascal, Tome 24 (2017) no. 2, pp. 225-234.

This note is devoted to prove that the de Gennes function has a holomorphic extension on a half strip containing + .

Publié le :
DOI : 10.5802/ambp.369
Classification : 81Q15, 32A10
Mots clés : de Gennes operator, holomorphic extension, holomorphic perturbation theory
Bonnaillie-Noël, Virginie 1 ; Hérau, Frédéric 2 ; Raymond, Nicolas 3

1 Département de mathématiques et applications, École normale supérieure, CNRS PSL Research University 75005 Paris, France
2 LMJL - UMR6629 Université de Nantes, CNRS 2 rue de la Houssinière, BP 92208 44322 Nantes cedex 3, France
3 IRMAR, Univ. Rennes 1, CNRS Campus de Beaulieu 35042 Rennes cedex, France
@article{AMBP_2017__24_2_225_0,
     author = {Bonnaillie-No\"el, Virginie and H\'erau, Fr\'ed\'eric and Raymond, Nicolas},
     title = {Holomorphic extension of the {de~Gennes} function},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {225--234},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {24},
     number = {2},
     year = {2017},
     doi = {10.5802/ambp.369},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.369/}
}
TY  - JOUR
AU  - Bonnaillie-Noël, Virginie
AU  - Hérau, Frédéric
AU  - Raymond, Nicolas
TI  - Holomorphic extension of the de Gennes function
JO  - Annales mathématiques Blaise Pascal
PY  - 2017
SP  - 225
EP  - 234
VL  - 24
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.369/
DO  - 10.5802/ambp.369
LA  - en
ID  - AMBP_2017__24_2_225_0
ER  - 
%0 Journal Article
%A Bonnaillie-Noël, Virginie
%A Hérau, Frédéric
%A Raymond, Nicolas
%T Holomorphic extension of the de Gennes function
%J Annales mathématiques Blaise Pascal
%D 2017
%P 225-234
%V 24
%N 2
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.369/
%R 10.5802/ambp.369
%G en
%F AMBP_2017__24_2_225_0
Bonnaillie-Noël, Virginie; Hérau, Frédéric; Raymond, Nicolas. Holomorphic extension of the de Gennes function. Annales mathématiques Blaise Pascal, Tome 24 (2017) no. 2, pp. 225-234. doi : 10.5802/ambp.369. http://www.numdam.org/articles/10.5802/ambp.369/

[1] Bonnaillie-Noël, Virginie; Hérau, Frédéric; Raymond, Nicolas Magnetic WKB constructions, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 2, pp. 817-891 | DOI | MR | Zbl

[2] Dauge, Monique; Helffer, Bernard Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators, J. Differ. Equations, Volume 104 (1993) no. 2, pp. 243-262 | DOI | MR | Zbl

[3] Fournais, Søren; Helffer, Bernard Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Applications, 77, Birkhäuser, Boston, MA, 2010, xx+324 pages | MR

[4] Helffer, Bernard Spectral theory and its applications, Cambridge Studies in Advanced Mathematics, 139, Cambridge University Press, Cambridge, 2013, vi+255 pages | MR | Zbl

[5] Hislop, Peter D.; Sigal, Israel Michael Introduction to spectral theory, Applied Mathematical Sciences, 113, Springer, 1996, x+337 pages (With applications to Schrödinger operators) | DOI | MR | Zbl

[6] Kato, Tosio Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, 132, Springer, 1966, xix+592 pages | MR | Zbl

[7] Popoff, Nicolas Sur l’opérateur de Schrödinger magnétique dans un domaine diédral, Université de Rennes 1 (France) (2012) (Ph. D. Thesis)

[8] Raymond, Nicolas Bound States of the Magnetic Schrödinger Operator, EMS Tracts in Mathematics, 27, European Mathematical Society, 2017, xiv+380 pages | Zbl

Cité par Sources :