This note is devoted to prove that the de Gennes function has a holomorphic extension on a half strip containing .
Mots clés : de Gennes operator, holomorphic extension, holomorphic perturbation theory
@article{AMBP_2017__24_2_225_0, author = {Bonnaillie-No\"el, Virginie and H\'erau, Fr\'ed\'eric and Raymond, Nicolas}, title = {Holomorphic extension of the {de~Gennes} function}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {225--234}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {24}, number = {2}, year = {2017}, doi = {10.5802/ambp.369}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.369/} }
TY - JOUR AU - Bonnaillie-Noël, Virginie AU - Hérau, Frédéric AU - Raymond, Nicolas TI - Holomorphic extension of the de Gennes function JO - Annales mathématiques Blaise Pascal PY - 2017 SP - 225 EP - 234 VL - 24 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.369/ DO - 10.5802/ambp.369 LA - en ID - AMBP_2017__24_2_225_0 ER -
%0 Journal Article %A Bonnaillie-Noël, Virginie %A Hérau, Frédéric %A Raymond, Nicolas %T Holomorphic extension of the de Gennes function %J Annales mathématiques Blaise Pascal %D 2017 %P 225-234 %V 24 %N 2 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.369/ %R 10.5802/ambp.369 %G en %F AMBP_2017__24_2_225_0
Bonnaillie-Noël, Virginie; Hérau, Frédéric; Raymond, Nicolas. Holomorphic extension of the de Gennes function. Annales mathématiques Blaise Pascal, Tome 24 (2017) no. 2, pp. 225-234. doi : 10.5802/ambp.369. http://www.numdam.org/articles/10.5802/ambp.369/
[1] Magnetic WKB constructions, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 2, pp. 817-891 | DOI | MR | Zbl
[2] Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators, J. Differ. Equations, Volume 104 (1993) no. 2, pp. 243-262 | DOI | MR | Zbl
[3] Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Applications, 77, Birkhäuser, Boston, MA, 2010, xx+324 pages | MR
[4] Spectral theory and its applications, Cambridge Studies in Advanced Mathematics, 139, Cambridge University Press, Cambridge, 2013, vi+255 pages | MR | Zbl
[5] Introduction to spectral theory, Applied Mathematical Sciences, 113, Springer, 1996, x+337 pages (With applications to Schrödinger operators) | DOI | MR | Zbl
[6] Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, 132, Springer, 1966, xix+592 pages | MR | Zbl
[7] Sur l’opérateur de Schrödinger magnétique dans un domaine diédral, Université de Rennes 1 (France) (2012) (Ph. D. Thesis)
[8] Bound States of the Magnetic Schrödinger Operator, EMS Tracts in Mathematics, 27, European Mathematical Society, 2017, xiv+380 pages | Zbl
Cité par Sources :