On présente une extension de la formule d’intégration de Weingarten, pour les espaces homogènes non commutatifs, vérifiant des hypothèses « d’aisance » adéquates. Les espaces qu’on considère sont des variétés algebriques non commutatives, généralisant les espaces du type , avec étant des sous-groupes du groupe unitaire, vérifiant certaines conditions d’uniformité. On traite d’abord les questions d’axiomatisation, ensuite on établit la formule de Weingarten, et on finit avec quelques conséquences probabilistes.
We discuss an extension of the Weingarten formula, to the case of noncommutative homogeneous spaces, under suitable “easiness” assumptions. The spaces that we consider are noncommutative algebraic manifolds, generalizing the spaces of type , with being subgroups of the unitary group, subject to certain uniformity conditions. We discuss various axiomatization issues, then we establish the Weingarten formula, and we derive some probabilistic consequences.
Keywords: Noncommutative manifold, Weingarten integration
Mot clés : Variété non commutative, Integration de Weingarten
@article{AMBP_2017__24_2_195_0, author = {Banica, Teodor}, title = {Weingarten integration over noncommutative homogeneous spaces}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {195--224}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {24}, number = {2}, year = {2017}, doi = {10.5802/ambp.368}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.368/} }
TY - JOUR AU - Banica, Teodor TI - Weingarten integration over noncommutative homogeneous spaces JO - Annales mathématiques Blaise Pascal PY - 2017 SP - 195 EP - 224 VL - 24 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.368/ DO - 10.5802/ambp.368 LA - en ID - AMBP_2017__24_2_195_0 ER -
%0 Journal Article %A Banica, Teodor %T Weingarten integration over noncommutative homogeneous spaces %J Annales mathématiques Blaise Pascal %D 2017 %P 195-224 %V 24 %N 2 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.368/ %R 10.5802/ambp.368 %G en %F AMBP_2017__24_2_195_0
Banica, Teodor. Weingarten integration over noncommutative homogeneous spaces. Annales mathématiques Blaise Pascal, Tome 24 (2017) no. 2, pp. 195-224. doi : 10.5802/ambp.368. http://www.numdam.org/articles/10.5802/ambp.368/
[1] The algebraic structure of quantum partial isometries, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 19 (2016) no. 1, pp. 1-36 | DOI | Zbl
[2] Liberation theory for noncommutative homogeneous spaces, Ann. Fac. Sci. Toulouse, Math., Volume 26 (2017) no. 1, pp. 127-156 | DOI | Zbl
[3] Integration over compact quantum groups, Publ. Res. Inst. Math. Sci., Volume 43 (2007) no. 2, pp. 277-302 | DOI | Zbl
[4] Quantum isometries and noncommutative spheres, Comm. Math. Phys., Volume 298 (2010) no. 2, pp. 343-356 | DOI | Zbl
[5] Noncommutative homogeneous spaces: the matrix case, J. Geom. Phys., Volume 62 (2012) no. 6, pp. 1451-1466 | DOI | Zbl
[6] Liberation of orthogonal Lie groups, Adv. Math., Volume 222 (2009) no. 4, pp. 1461-1501 | DOI | Zbl
[7] Stable laws and domains of attraction in free probability theory, Ann. Math., Volume 149 (1999) no. 3, pp. 1023-1060 | DOI | Zbl
[8] Ergodic actions of compact matrix pseudogroups on C-algebras, Recent advances in operator algebras (Astérisque), Volume 232, Société Mathématique de France, 1995, pp. 93-109 | Zbl
[9] Integration with respect to the Haar measure on the unitary, orthogonal and symplectic group, Comm. Math. Phys., Volume 264 (2006) no. 3, pp. 773-795 | DOI | Zbl
[10] Tannaka-Krein duality for compact quantum homogeneous spaces. I. General theory, Theory Appl. Categ., Volume 28 (2013), pp. 1099-1138 | Zbl
[11] On the partition approach to Schur-Weyl duality and free quantum groups, Transform. Groups, Volume 22 (2017) no. 3, pp. 707-751 | DOI | Zbl
[12] Embeddable quantum homogeneous spaces, J. Math. Anal. Appl., Volume 411 (2014) no. 2, pp. 574-591 | DOI | Zbl
[13] Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Commun. Math. Phys., Volume 170 (1995) no. 1, pp. 1-20 | DOI | Zbl
[14] The full classification of orthogonal easy quantum groups, Commun. Math. Phys., Volume 341 (2016) no. 3, pp. 751-779 | DOI | Zbl
[15] Quantum groups with partial commutation relations (2016) (https://arxiv.org/abs/1603.09192)
[16] Unitary easy quantum groups: the free case and the group case (2015) (https://arxiv.org/abs/1512.00195)
[17] Free products of compact quantum groups, Commun. Math. Phys., Volume 167 (1995) no. 3, pp. 671-692 | DOI | Zbl
[18] Asymptotic behavior of group integrals in the limit of infinite rank, J. Math. Phys., Volume 19 (1978), pp. 999-1001 | DOI | Zbl
[19] Compact matrix pseudogroups, Commun. Math. Phys., Volume 111 (1987), pp. 613-665 | DOI | Zbl
[20] Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math., Volume 93 (1988) no. 1, pp. 35-76 | DOI | Zbl
Cité par Sources :