Weingarten integration over noncommutative homogeneous spaces
[Intégration de Weingarten sur les espaces homogènes non commutatifs]
Annales mathématiques Blaise Pascal, Tome 24 (2017) no. 2, pp. 195-224.

On présente une extension de la formule d’intégration de Weingarten, pour les espaces homogènes non commutatifs, vérifiant des hypothèses « d’aisance » adéquates. Les espaces qu’on considère sont des variétés algebriques non commutatives, généralisant les espaces du type X=G/H N , avec HGU N étant des sous-groupes du groupe unitaire, vérifiant certaines conditions d’uniformité. On traite d’abord les questions d’axiomatisation, ensuite on établit la formule de Weingarten, et on finit avec quelques conséquences probabilistes.

We discuss an extension of the Weingarten formula, to the case of noncommutative homogeneous spaces, under suitable “easiness” assumptions. The spaces that we consider are noncommutative algebraic manifolds, generalizing the spaces of type X=G/H N , with HGU N being subgroups of the unitary group, subject to certain uniformity conditions. We discuss various axiomatization issues, then we establish the Weingarten formula, and we derive some probabilistic consequences.

Publié le :
DOI : 10.5802/ambp.368
Classification : 46L51, 14A22, 60B15
Keywords: Noncommutative manifold, Weingarten integration
Mot clés : Variété non commutative, Integration de Weingarten
Banica, Teodor 1

1 Department of Mathematics Cergy-Pontoise University 95000 Cergy-Pontoise, France
@article{AMBP_2017__24_2_195_0,
     author = {Banica, Teodor},
     title = {Weingarten integration over noncommutative homogeneous spaces},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {195--224},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {24},
     number = {2},
     year = {2017},
     doi = {10.5802/ambp.368},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.368/}
}
TY  - JOUR
AU  - Banica, Teodor
TI  - Weingarten integration over noncommutative homogeneous spaces
JO  - Annales mathématiques Blaise Pascal
PY  - 2017
SP  - 195
EP  - 224
VL  - 24
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.368/
DO  - 10.5802/ambp.368
LA  - en
ID  - AMBP_2017__24_2_195_0
ER  - 
%0 Journal Article
%A Banica, Teodor
%T Weingarten integration over noncommutative homogeneous spaces
%J Annales mathématiques Blaise Pascal
%D 2017
%P 195-224
%V 24
%N 2
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.368/
%R 10.5802/ambp.368
%G en
%F AMBP_2017__24_2_195_0
Banica, Teodor. Weingarten integration over noncommutative homogeneous spaces. Annales mathématiques Blaise Pascal, Tome 24 (2017) no. 2, pp. 195-224. doi : 10.5802/ambp.368. http://www.numdam.org/articles/10.5802/ambp.368/

[1] Banica, Teodor The algebraic structure of quantum partial isometries, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 19 (2016) no. 1, pp. 1-36 | DOI | Zbl

[2] Banica, Teodor Liberation theory for noncommutative homogeneous spaces, Ann. Fac. Sci. Toulouse, Math., Volume 26 (2017) no. 1, pp. 127-156 | DOI | Zbl

[3] Banica, Teodor; Collins, Benoît Integration over compact quantum groups, Publ. Res. Inst. Math. Sci., Volume 43 (2007) no. 2, pp. 277-302 | DOI | Zbl

[4] Banica, Teodor; Goswami, Debashish Quantum isometries and noncommutative spheres, Comm. Math. Phys., Volume 298 (2010) no. 2, pp. 343-356 | DOI | Zbl

[5] Banica, Teodor; Skalski, Adam; Sołtan, Piotr Noncommutative homogeneous spaces: the matrix case, J. Geom. Phys., Volume 62 (2012) no. 6, pp. 1451-1466 | DOI | Zbl

[6] Banica, Teodor; Speicher, Roland Liberation of orthogonal Lie groups, Adv. Math., Volume 222 (2009) no. 4, pp. 1461-1501 | DOI | Zbl

[7] Bercovici, Hari; Pata, Vittorino Stable laws and domains of attraction in free probability theory, Ann. Math., Volume 149 (1999) no. 3, pp. 1023-1060 | DOI | Zbl

[8] Boca, Florin P. Ergodic actions of compact matrix pseudogroups on C * -algebras, Recent advances in operator algebras (Astérisque), Volume 232, Société Mathématique de France, 1995, pp. 93-109 | Zbl

[9] Collins, Benoît; Śniady, Piotr Integration with respect to the Haar measure on the unitary, orthogonal and symplectic group, Comm. Math. Phys., Volume 264 (2006) no. 3, pp. 773-795 | DOI | Zbl

[10] De Commer, Kenny; Yamashita, Makoto Tannaka-Krein duality for compact quantum homogeneous spaces. I. General theory, Theory Appl. Categ., Volume 28 (2013), pp. 1099-1138 | Zbl

[11] Freslon, Amaury On the partition approach to Schur-Weyl duality and free quantum groups, Transform. Groups, Volume 22 (2017) no. 3, pp. 707-751 | DOI | Zbl

[12] Kasprzak, Paweł; Sołtan, Piotr Embeddable quantum homogeneous spaces, J. Math. Anal. Appl., Volume 411 (2014) no. 2, pp. 574-591 | DOI | Zbl

[13] Podleś, Piotr Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Commun. Math. Phys., Volume 170 (1995) no. 1, pp. 1-20 | DOI | Zbl

[14] Raum, Sven; Weber, Moritz The full classification of orthogonal easy quantum groups, Commun. Math. Phys., Volume 341 (2016) no. 3, pp. 751-779 | DOI | Zbl

[15] Speicher, Roland; Weber, Moritz Quantum groups with partial commutation relations (2016) (https://arxiv.org/abs/1603.09192)

[16] Tarrago, Pierre; Weber, Moritz Unitary easy quantum groups: the free case and the group case (2015) (https://arxiv.org/abs/1512.00195)

[17] Wang, Shuzhou Free products of compact quantum groups, Commun. Math. Phys., Volume 167 (1995) no. 3, pp. 671-692 | DOI | Zbl

[18] Weingarten, Don Asymptotic behavior of group integrals in the limit of infinite rank, J. Math. Phys., Volume 19 (1978), pp. 999-1001 | DOI | Zbl

[19] Woronowicz, Stanisław Lech Compact matrix pseudogroups, Commun. Math. Phys., Volume 111 (1987), pp. 613-665 | DOI | Zbl

[20] Woronowicz, Stanisław Lech Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math., Volume 93 (1988) no. 1, pp. 35-76 | DOI | Zbl

Cité par Sources :