Solution of a class of reaction-diffusion systems via logarithmic Sobolev inequality
Annales mathématiques Blaise Pascal, Tome 24 (2017) no. 1, pp. 1-53.

Nous étudions l’existence globale, l’unicité et la positivité de solutions faibles pour une classe de systèmes de réaction-diffusion provenant d’équations chimiques. Le théorème principal repose uniquement sur une inégalité de Sobolev logarithmique et sur l’intégrabilité exponentielle des conditions initiales. En particulier nous développons une stratégie indépendante de la dimension dans un domaine non borné.

We study global existence, uniqueness and positivity of weak solutions of a class of reaction-diffusion systems coming from chemical reactions. The principal result is based only on a logarithmic Sobolev inequality and the exponential integrability of the initial data. In particular we develop a strategy independent of dimensions in an unbounded domain.

Publié le :
DOI : 10.5802/ambp.363
Classification : 28B10, 35K57, 35R15
Keywords: Reaction-diffusion systems, Markov semigroups, logarithmic Sobolev inequality, infinite dimensions.
Mots clés : Reaction-diffusion systems, Markov semigroups, logarithmic Sobolev inequality, infinite dimensions.
Fougères, Pierre 1 ; Gentil, Ivan 2 ; Zegarliński, Boguslaw 3

1 Institut de Mathématiques de Toulouse, CNRS UMR 5219 Université de Toulouse Route de Narbonne 31062 Toulouse, France
2 Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France
3 Imperial College, London South Kensington Campus London SW7 2AZ, United Kingdom
@article{AMBP_2017__24_1_1_0,
     author = {Foug\`eres, Pierre and Gentil, Ivan and Zegarli\'nski, Boguslaw},
     title = {Solution of a class of reaction-diffusion systems via logarithmic {Sobolev} inequality},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {1--53},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {24},
     number = {1},
     year = {2017},
     doi = {10.5802/ambp.363},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.363/}
}
TY  - JOUR
AU  - Fougères, Pierre
AU  - Gentil, Ivan
AU  - Zegarliński, Boguslaw
TI  - Solution of a class of reaction-diffusion systems via logarithmic Sobolev inequality
JO  - Annales mathématiques Blaise Pascal
PY  - 2017
SP  - 1
EP  - 53
VL  - 24
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.363/
DO  - 10.5802/ambp.363
LA  - en
ID  - AMBP_2017__24_1_1_0
ER  - 
%0 Journal Article
%A Fougères, Pierre
%A Gentil, Ivan
%A Zegarliński, Boguslaw
%T Solution of a class of reaction-diffusion systems via logarithmic Sobolev inequality
%J Annales mathématiques Blaise Pascal
%D 2017
%P 1-53
%V 24
%N 1
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.363/
%R 10.5802/ambp.363
%G en
%F AMBP_2017__24_1_1_0
Fougères, Pierre; Gentil, Ivan; Zegarliński, Boguslaw. Solution of a class of reaction-diffusion systems via logarithmic Sobolev inequality. Annales mathématiques Blaise Pascal, Tome 24 (2017) no. 1, pp. 1-53. doi : 10.5802/ambp.363. http://www.numdam.org/articles/10.5802/ambp.363/

[1] Amann, Herbert Existence and regularity for semilinear parabolic evolution equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 11 (1984) no. 4, pp. 593-676 | MR | Zbl

[2] Amann, Herbert Global existence for semilinear parabolic systems, J. Reine Angew. Math., Volume 360 (1985), pp. 47-83 | DOI | MR | Zbl

[3] Ancona, Alano Continuité des contractions dans les espaces de Dirichlet, Séminaire de Théorie du Potentiel de Paris, No. 2 (Univ. Paris, Paris, 1975–1976) (Lecture Notes in Mathematics), Volume 563, Springer (1976), pp. 1-26 | MR | Zbl

[4] Bakry, Dominique; Gentil, Ivan; Ledoux, Michel Analysis and Geometry of Markov Diffusion Operators, Grundlehren der mathematischen Wissenschaften, 348, Springer, 2014, xx+552 pages | Zbl

[5] Barthe, Frank; Cattiaux, Patrick; Roberto, Cyril Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry, Rev. Mat. Iberoam., Volume 22 (2006) no. 3, pp. 993-1067 | DOI | MR | Zbl

[6] Bobkov, Sergey G.; Zegarliński, Bogusław Entropy bounds and isoperimetry, Mem. Am. Math. Soc., Volume 176 (2005) no. 829, x+69 pages | DOI | MR | Zbl

[7] Bobkov, Sergey G.; Zegarliński, Bogusław Distributions with slow tails and ergodicity of Markov semigroups in infinite dimensions, Around the research of Vladimir Maz’ya. I (International Mathematical Series (New York)), Volume 11, Springer, 2010, pp. 13-79 | Zbl

[8] Bodineau, Thierry; Helffer, Bernard The log-Sobolev inequality for unbounded spin systems, J. Funct. Anal., Volume 166 (1999) no. 1, pp. 168-178 | DOI | MR | Zbl

[9] Bouleau, Nicolas; Hirsch, Francis Dirichlet forms and analysis on Wiener space, de Gruyter Studies in Mathematics, 14, Walter de Gruyter & Co., 1991, x+325 pages | DOI | MR | Zbl

[10] Càceres, M. J.; Cañizo, José A. Close-to-equilibrium behaviour of quadratic reaction-diffusion systems with detailed balance (2016) (preprint)

[11] Cañizo, José A.; Desvillettes, Laurent; Fellner, Klemens Improved duality estimates and applications to reaction-diffusion equations, Comm. Partial Differential Equations, Volume 39 (2014) no. 6, pp. 1185-1204 | DOI | Zbl

[12] Carrillo, José Antonio; Hittmeir, Sabine; Jüngel, Ansgar Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 12 | DOI | MR | Zbl

[13] Chen, Shutao Geometry of Orlicz spaces, Diss. Math., Volume 356 (1996) (204 pages) | MR | Zbl

[14] Davies, Edward Brian Heat kernels and spectral theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1990, x+197 pages | MR | Zbl

[15] Desvillettes, Laurent About entropy methods for reaction-diffusion equations, Riv. Mat. Univ. Parma, Volume 7 (2007), pp. 81-123 | MR | Zbl

[16] Desvillettes, Laurent; Fellner, Klemens Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl., Volume 319 (2006) no. 1, pp. 157-176 | DOI | MR | Zbl

[17] Desvillettes, Laurent; Fellner, Klemens Entropy Methods for Reaction-Diffusion Equations: Slowly Growing A-priori Bounds, Rev. Mat. Iberoam., Volume 24 (2008) no. 2, pp. 407-431 | DOI | Zbl

[18] Diestel, Joe; Uhl, J.Jerry jun. Vector measures, Mathematical Surveys, 15, American Mathematical Society, 1977, xiii+322 pages | Zbl

[19] Efendiev, Messoud A.; Miranville, Alain M.; Zelik, Sergey V. Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 460 (2004) no. 2044, pp. 1107-1129 | DOI | MR | Zbl

[20] Evans, Lawrence C. Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010, xxii+749 pages | MR | Zbl

[21] Fougères, Pierre; Roberto, Cyril; Zegarliński, Bogusław Sub-Gaussian measures and associated semilinear problems, Rev. Mat. Iberoam., Volume 28 (2012) no. 2, pp. 305-350 | Zbl

[22] Friedman, Avner Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, 1964, xiv+347 pages | Zbl

[23] Fukushima, Masatoshi; Oshima, Yoichi; Takeda, Masayoshi Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics, 19, Walter de Gruyter & Co., 2011, x+489 pages | MR | Zbl

[24] Gentil, Ivan; Zegarliński, Bogusław Asymptotic behaviour of reversible chemical reaction-diffusion equations, Kinet. Relat. Models, Volume 3 (2010) no. 3, pp. 427-444 | DOI | MR | Zbl

[25] Gross, Leonard Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 4, pp. 1061-1083 | DOI | Zbl

[26] Guionnet, Alice; Zegarliński, Bogusław Lectures on logarithmic Sobolev inequalities, Séminaire de Probabilités, XXXVI (Lecture Notes in Mathematics), Volume 1801, Springer, Berlin, 2003, pp. 1-134 | MR | Zbl

[27] Hebisch, Waldemar; Zegarliński, Bogusław Coercive inequalities on metric measure spaces, J. Funct. Anal., Volume 258 (2010) no. 3, pp. 814-851 | DOI | MR | Zbl

[28] Inglis, James D.; Papageorgiou, I. Logarithmic Sobolev inequalities for infinite dimensional Hörmander type generators on the Heisenberg group, Potential Anal., Volume 31 (2009) no. 1, pp. 79-102 | DOI | MR | Zbl

[29] Ladyženskaja, Olga Aleksandrovna; Solonnikov, Vsevolod A.; Uralʼceva, Nina Nikolaevna Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, 1968

[30] Ługiewicz, Piotr; Zegarliński, Bogusław Coercive inequalities for Hörmander type generators in infinite dimensions, J. Funct. Anal., Volume 247 (2007) no. 2, pp. 438-476 | DOI | MR | Zbl

[31] Ma, Zhi-Ming; Röckner, Michael Introduction to the theory of (non-symmetric) Dirichlet forms, Universitext, Springer, 1992, vi+209 pages | DOI | MR | Zbl

[32] Mahé, René; Fraissard, Jacques Équilibres chimiques en solution acqueuse, Masson, Paris, 1989, x+301 pages

[33] Pierre, Michel Global existence in reaction-diffusion systems with control of mass: a survey, Milan J. Math., Volume 78 (2010) no. 2, pp. 417-455 | DOI | MR | Zbl

[34] Rao, Malempati M.; Ren, Zhong-Dao Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker Inc., New York, 1991, xii+449 pages | MR | Zbl

[35] Roberto, Cyril; Zegarliński, Bogusław Orlicz-Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups, J. Funct. Anal., Volume 243 (2007) no. 1, pp. 28-66 | DOI | MR | Zbl

[36] Rothe, Franz Global solutions of reaction-diffusion systems, Lecture Notes in Mathematics, 1072, Springer, 1984, v+216 pages | MR | Zbl

[37] Schwabik, Štefan; Ye, Guojo Topics in Banach space integration, Series in Real Analysis, 10, World Scientific Publishing Co., 2005, xiv+298 pages | DOI | MR | Zbl

[38] Stroock, Daniel W.; Zegarliński, Bogusław The logarithmic Sobolev inequality for continuous spin systems on a lattice, J. Funct. Anal., Volume 104 (1992) no. 2, pp. 299-326 | DOI | MR | Zbl

[39] Taylor, Michael E. Partial differential equations. III Nonlinear equations, Applied Mathematical Sciences, 117, Springer, 1997, xxii+608 pages (Nonlinear equations, Corrected reprint of the 1996 original) | MR | Zbl

[40] Yoshida, Nobuo Application of log-Sobolev inequality to the stochastic dynamics of unbounded spin systems on the lattice, J. Funct. Anal., Volume 173 (2000) no. 1, pp. 74-102 | DOI | MR | Zbl

[41] Yosida, Kosaku Functional analysis, Grundlehren der Mathematischen Wissenschaften, 123, Springer, 1965, xi+458 pages | MR | Zbl

[42] Zegarliński, Bogusław On log-Sobolev inequalities for infinite lattice systems, Lett. Math. Phys., Volume 20 (1990) no. 3, pp. 173-182 | DOI | MR | Zbl

[43] Zegarliński, Bogusław The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Comm. Math. Phys., Volume 175 (1996) no. 2, pp. 401-432 http://projecteuclid.org/euclid.cmp/1104275930 | DOI | MR | Zbl

[44] Zelik, Sergey V. Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity, Comm. Pure Appl. Math., Volume 56 (2003) no. 5, pp. 584-637 | DOI | MR | Zbl

[45] Zelik, Sergey V. Spatial and dynamical chaos generated by reaction-diffusion systems in unbounded domains, J. Dyn. Differ. Equations, Volume 19 (2007) no. 1, pp. 1-74 | DOI | MR | Zbl

Cité par Sources :