The goal of this paper is to set up an obstruction theory in the context of algebras over an operad and in the framework of differential graded modules over a field. Precisely, the problem we consider is the following: Suppose given two algebras and over an operad and an algebra morphism from to . Can we realize this morphism as a morphism of -algebras from to in the homotopy category? Also, if the realization exists, is it unique in the homotopy category?
We identify obstruction cocycles for this problem, and notice that they live in the first two groups of operadic -cohomology.
Mots clés : Obstruction theory, algebras over operads
@article{AMBP_2016__23_1_75_0, author = {Hoffbeck, Eric}, title = {Obstruction theory for algebras over an operad}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {75--107}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {23}, number = {1}, year = {2016}, doi = {10.5802/ambp.355}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.355/} }
TY - JOUR AU - Hoffbeck, Eric TI - Obstruction theory for algebras over an operad JO - Annales mathématiques Blaise Pascal PY - 2016 SP - 75 EP - 107 VL - 23 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.355/ DO - 10.5802/ambp.355 LA - en ID - AMBP_2016__23_1_75_0 ER -
Hoffbeck, Eric. Obstruction theory for algebras over an operad. Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 1, pp. 75-107. doi : 10.5802/ambp.355. http://www.numdam.org/articles/10.5802/ambp.355/
[1] Combinatorial operad actions on cochains, Math. Proc. Cambridge Philos. Soc., Volume 137 (2004) no. 1, pp. 135-174 | DOI
[2] Axiomatic homotopy theory for operads, Comment. Math. Helv., Volume 78 (2003) no. 4, pp. 805-831 | DOI
[3] The Boardman-Vogt resolution of operads in monoidal model categories, Topology, Volume 45 (2006) no. 5, pp. 807-849 | DOI
[4] The realization space of a -algebra: a moduli problem in algebraic topology, Topology, Volume 43 (2004) no. 4, pp. 857-892 | DOI
[5] Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73-126 | DOI
[6] Modules over operads and functors, Lecture Notes in Mathematics, 1967, Springer-Verlag, Berlin, 2009, x+308 pages | DOI
[7] Operadic cobar constructions, cylinder objects and homotopy morphisms of algebras over operads, Alpine perspectives on algebraic topology (Contemp. Math.), Volume 504, Amer. Math. Soc., Providence, RI, 2009, pp. 125-188 | DOI
[8] Props in model categories and homotopy invariance of structures, Georgian Math. J., Volume 17 (2010) no. 1, pp. 79-160
[9] Operads, homotopy algebra and iterated integrals for double loop spaces (1994) (http://arxiv.org/abs/hep-th/9403055)
[10] Koszul duality for operads, Duke Math. J., Volume 76 (1994) no. 1, pp. 203-272 | DOI
[11] Moduli spaces of commutative ring spectra, Structured ring spectra (London Math. Soc. Lecture Note Ser.), Volume 315, Cambridge Univ. Press, Cambridge, 2004, pp. 151-200 | DOI
[12] Obstructions to homotopy equivalences, Adv. in Math., Volume 32 (1979) no. 3, pp. 233-279 | DOI
[13] Homological algebra of homotopy algebras, Comm. Algebra, Volume 25 (1997) no. 10, pp. 3291-3323 | DOI
[14] Model categories and their localizations, Mathematical Surveys and Monographs, 99, American Mathematical Society, Providence, RI, 2003, xvi+457 pages
[15] -homology of algebras over an operad, Algebr. Geom. Topol., Volume 10 (2010) no. 3, pp. 1781-1806 | DOI
[16] Model categories, Mathematical Surveys and Monographs, 63, American Mathematical Society, Providence, RI, 1999, xii+209 pages
[17] On the theory of homology of fiber spaces, Uspekhi Mat. Nauk, Volume 35 (1980) no. 3(213), pp. 183-188 International Topology Conference (Moscow State Univ., Moscow, 1979)
[18] On a plus-construction for algebras over an operad, -Theory, Volume 18 (1999) no. 4, pp. 317-337 | DOI
[19] Associahedra, cellular -construction and products of -algebras, Trans. Amer. Math. Soc., Volume 358 (2006) no. 6, p. 2353-2372 (electronic) | DOI
[20] Gamma homology, Lie representations and multiplications, Invent. Math., Volume 152 (2003) no. 2, pp. 331-348 | DOI
[21] Operads and -homology of commutative rings, Math. Proc. Cambridge Philos. Soc., Volume 132 (2002) no. 2, pp. 197-234 | DOI
Cité par Sources :