We investigate possible generalizations of the de Finetti theorem to bi-free probability. We first introduce a twisted action of the quantum permutation groups corresponding to the combinatorics of bi-freeness. We then study properties of families of pairs of variables which are invariant under this action, both in the bi-noncommutative setting and in the usual noncommutative setting. We do not have a completely satisfying analogue of the de Finetti theorem, but we have partial results leading the way. We end with suggestions concerning the symmetries of a potential notion of -freeness.
Mots clés : Quantum groups, free probability, De Finetti theorem
@article{AMBP_2016__23_1_21_0, author = {Freslon, Amaury and Weber, Moritz}, title = {On bi-free {De} {Finetti} theorems}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {21--51}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {23}, number = {1}, year = {2016}, doi = {10.5802/ambp.353}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.353/} }
TY - JOUR AU - Freslon, Amaury AU - Weber, Moritz TI - On bi-free De Finetti theorems JO - Annales mathématiques Blaise Pascal PY - 2016 SP - 21 EP - 51 VL - 23 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.353/ DO - 10.5802/ambp.353 LA - en ID - AMBP_2016__23_1_21_0 ER -
Freslon, Amaury; Weber, Moritz. On bi-free De Finetti theorems. Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 1, pp. 21-51. doi : 10.5802/ambp.353. http://www.numdam.org/articles/10.5802/ambp.353/
[1] Symmetries of a generic coaction, Math. Ann., Volume 314 (1999) no. 4, pp. 763-780 | DOI
[2] Combinatorics of bi-freeness with amalgamation, Comm. Math. Phys., Volume 338 (2015), pp. 801-847 | DOI
[3] On two-faced families of noncommutative random variables, Canad. J. Math., Volume 67 (2015) no. 6, pp. 1290-1325 | DOI
[4] Quantum exchangeable sequences of algebras, Indiana Univ. Math. J., Volume 58 (2009) no. 3, pp. 1097-1125 | DOI
[5] Quantum symmetric states on free product C*-algebras (2014) (http://arxiv.org/abs/1305.7293)
[6] A noncommutative de Finetti theorem : invariance under quantum permutations is equivalent to freeness with amalgamation, Comm. Math. Phys., Volume 291 (2009) no. 2, pp. 473-490 | DOI
[7] A noncommutative De Finetti theorem for boolean independence, J. Funct. Anal., Volume 269 (2015) no. 7, pp. 1950-1994 | DOI
[8] Double-ended queues and joint moments of left-right canonical operators on full Fock space, Internat. J. Math., Volume 26 (2014) no. 2 (1550016)
[9] Lectures on the combinatorics of free probability, Lecture note series, 335, London Mathematical Society, 2006
[10] Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc., 627, AMS, 1998
[11] Free probability for pairs of faces II : -variables bi-free -transform and systems with rank commutation (2013) (http://arxiv.org/abs/1308.2035)
[12] Free probability for pairs of faces I, Comm. Math. Phys., Volume 332 (2014) no. 3, pp. 955-980 | DOI
[13] Quantum symmetry groups of finite spaces, Comm. Math. Phys., Volume 195 (1998) no. 1, pp. 195-211 | DOI
[14] Compact quantum groups, Symétries quantiques (Les Houches, 1995) (1998), pp. 845-884
Cité par Sources :