The objective of this paper is to obtain sharp upper bound to the second Hankel functional associated with the
Mots-clés : Analytic function, parabolic starlike and uniformly convex functions, upper bound, second Hankel functional, positive real function, Toeplitz determinants.
@article{AMBP_2014__21_2_39_0, author = {Vamshee Krishna, D. and Venkateswarlu, B. and RamReddy, T.}, title = {Coefficient inequality for transforms of parabolic starlike and uniformly convex functions}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {39--56}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {21}, number = {2}, year = {2014}, doi = {10.5802/ambp.341}, mrnumber = {3322614}, language = {en}, url = {https://www.numdam.org/articles/10.5802/ambp.341/} }
TY - JOUR AU - Vamshee Krishna, D. AU - Venkateswarlu, B. AU - RamReddy, T. TI - Coefficient inequality for transforms of parabolic starlike and uniformly convex functions JO - Annales mathématiques Blaise Pascal PY - 2014 SP - 39 EP - 56 VL - 21 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://www.numdam.org/articles/10.5802/ambp.341/ DO - 10.5802/ambp.341 LA - en ID - AMBP_2014__21_2_39_0 ER -
%0 Journal Article %A Vamshee Krishna, D. %A Venkateswarlu, B. %A RamReddy, T. %T Coefficient inequality for transforms of parabolic starlike and uniformly convex functions %J Annales mathématiques Blaise Pascal %D 2014 %P 39-56 %V 21 %N 2 %I Annales mathématiques Blaise Pascal %U https://www.numdam.org/articles/10.5802/ambp.341/ %R 10.5802/ambp.341 %G en %F AMBP_2014__21_2_39_0
Vamshee Krishna, D.; Venkateswarlu, B.; RamReddy, T. Coefficient inequality for transforms of parabolic starlike and uniformly convex functions. Annales mathématiques Blaise Pascal, Tome 21 (2014) no. 2, pp. 39-56. doi : 10.5802/ambp.341. https://www.numdam.org/articles/10.5802/ambp.341/
[1] Hankel Determinant for a class of analytic functions involving a generalized linear differential operators, Int. J. Pure Appl. Math., Volume 69(4) (2011), pp. 429 -435 (MR 2847841 | Zbl 1220.30011) | MR | Zbl
[2] Functions which map the interior of the unit circle upon simple regions, Annal. of. Math., Volume (2)17 (1915), pp. 12 -22 (MR 1503516 | JFM 45.0672.02) | DOI | MR
[3] Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc.(second series), Volume 26(1) (2003), pp. 63 -71 MR 2055766 (2005b:30011) | Zbl 1185.30010. | MR | Zbl
[4] Starlikeness associated with parabolic regions, Int. J. Math. Math. Sci., Volume 4 (2005), pp. 561-570 MR 2172395 (2006d:30011) | Zbl 1077.30011. | DOI | MR | Zbl
[5] The Fekete-Szeg
[6] Coefficients of parabolic starlike functions of order
[7] Univalent functions, 259, Grundlehren der Mathematischen Wissenschaften, New York, Springer-verlag XIV, 328, 1983 (MR 0708494 | Zbl 0514.30001) | MR | Zbl
[8] The Hankel determinant of exponential polynomials, Amer. Math. Monthly, Volume 107(6) (2000), pp. 557-560 MR 1767065 (2001c:15009) | Zbl 0985.15006. | DOI | MR | Zbl
[9] On uniformly convex functions, Ann. Polon. Math., Volume 56 (1) (1991), pp. 87 -92 MR 1145573 (93a:30009) | Zbl 0744.30010. | MR | Zbl
[10] Toeplitz forms and their applications, Second edition. Chelsea Publishing Co., New York, 1984 (MR 0890515 | Zbl 0611.47018) | MR | Zbl
[11] Coefficient inequality for a function whose derivative has a positive real part, J. Inequl. Pure Appl. Math., Volume 7(2) (2006), pp. 1-5 (MR 2221331 | Zbl 1134.30310.) | MR | Zbl
[12] Hankel determinant for starlike and convex functions, Int. J. Math. Anal., (Ruse), Volume 4 (no. 13-16) (2007), pp. 619-625 (MR 2370200 | Zbl 1137.30308.) | MR | Zbl
[13] The Hankel transform and some of its properties, J. Integer Seq., Volume 4 (1) (2001), pp. 1-11 (MR 1848942 | Zbl 0978.15022.) | MR | Zbl
[14] Coefficient bounds for the inverse of a function with derivative in
[15] Uniformly convex functions, Ann. Polon. Math., Volume 57(2) (1992), pp. 165 -175 (MR 1182182.) | MR | Zbl
[16] On the second Hankel determinant of areally mean
[17] Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl., Volume 28(8) (1983), pp. 731 -739 (MR 0725316 | Zbl 0524.30008.) | MR | Zbl
[18] On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., Volume 41 (1966), pp. 111-122 (MR 0185105 | Zbl 0138.29801.) | DOI | MR | Zbl
[19] Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975 (MR 0507768 | Zbl 0298.30014.) | MR | Zbl
[20] A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie - Sklodowska Sect. A., Volume 47 (1993), pp. 123 -134 (MR 1344982 | Zbl 0879.30004.) | MR | Zbl
[21] Orthogonal polynomials on the unit circle, Part 1. Classical theory, AMS Colloquium Publ. 54, Part 1, American Mathematical Society, Providence, RI, 2005 (MR 2105088| Zbl 1082.42020) | MR | Zbl
[22] Coefficient inequality for uniformly convex functions of order
Cité par Sources :