The objective of this paper is to obtain sharp upper bound to the second Hankel functional associated with the root transform of normalized analytic function belonging to parabolic starlike and uniformly convex functions, defined on the open unit disc in the complex plane, using Toeplitz determinants.
Mots clés : Analytic function, parabolic starlike and uniformly convex functions, upper bound, second Hankel functional, positive real function, Toeplitz determinants.
@article{AMBP_2014__21_2_39_0, author = {Vamshee Krishna, D. and Venkateswarlu, B. and RamReddy, T.}, title = {Coefficient inequality for transforms of parabolic starlike and uniformly convex functions}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {39--56}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {21}, number = {2}, year = {2014}, doi = {10.5802/ambp.341}, mrnumber = {3322614}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.341/} }
TY - JOUR AU - Vamshee Krishna, D. AU - Venkateswarlu, B. AU - RamReddy, T. TI - Coefficient inequality for transforms of parabolic starlike and uniformly convex functions JO - Annales mathématiques Blaise Pascal PY - 2014 SP - 39 EP - 56 VL - 21 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.341/ DO - 10.5802/ambp.341 LA - en ID - AMBP_2014__21_2_39_0 ER -
%0 Journal Article %A Vamshee Krishna, D. %A Venkateswarlu, B. %A RamReddy, T. %T Coefficient inequality for transforms of parabolic starlike and uniformly convex functions %J Annales mathématiques Blaise Pascal %D 2014 %P 39-56 %V 21 %N 2 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.341/ %R 10.5802/ambp.341 %G en %F AMBP_2014__21_2_39_0
Vamshee Krishna, D.; Venkateswarlu, B.; RamReddy, T. Coefficient inequality for transforms of parabolic starlike and uniformly convex functions. Annales mathématiques Blaise Pascal, Tome 21 (2014) no. 2, pp. 39-56. doi : 10.5802/ambp.341. http://www.numdam.org/articles/10.5802/ambp.341/
[1] Hankel Determinant for a class of analytic functions involving a generalized linear differential operators, Int. J. Pure Appl. Math., Volume 69(4) (2011), pp. 429 -435 (MR 2847841 | Zbl 1220.30011) | MR | Zbl
[2] Functions which map the interior of the unit circle upon simple regions, Annal. of. Math., Volume (2)17 (1915), pp. 12 -22 (MR 1503516 | JFM 45.0672.02) | DOI | MR
[3] Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc.(second series), Volume 26(1) (2003), pp. 63 -71 MR 2055766 (2005b:30011) | Zbl 1185.30010. | MR | Zbl
[4] Starlikeness associated with parabolic regions, Int. J. Math. Math. Sci., Volume 4 (2005), pp. 561-570 MR 2172395 (2006d:30011) | Zbl 1077.30011. | DOI | MR | Zbl
[5] The Fekete-Szeg coefficient functional for transforms of analytic functions, Bull. Iran. Math. Soc., Volume 35(2) (2009), pp. 119-142 (MR 2642930.) | MR | Zbl
[6] Coefficients of parabolic starlike functions of order , World Sci. Publ. River Edge, New Jersey, 1995, pp. 23 -36 (1995 MR 1415158 [97 h:30008].) | MR | Zbl
[7] Univalent functions, 259, Grundlehren der Mathematischen Wissenschaften, New York, Springer-verlag XIV, 328, 1983 (MR 0708494 | Zbl 0514.30001) | MR | Zbl
[8] The Hankel determinant of exponential polynomials, Amer. Math. Monthly, Volume 107(6) (2000), pp. 557-560 MR 1767065 (2001c:15009) | Zbl 0985.15006. | DOI | MR | Zbl
[9] On uniformly convex functions, Ann. Polon. Math., Volume 56 (1) (1991), pp. 87 -92 MR 1145573 (93a:30009) | Zbl 0744.30010. | MR | Zbl
[10] Toeplitz forms and their applications, Second edition. Chelsea Publishing Co., New York, 1984 (MR 0890515 | Zbl 0611.47018) | MR | Zbl
[11] Coefficient inequality for a function whose derivative has a positive real part, J. Inequl. Pure Appl. Math., Volume 7(2) (2006), pp. 1-5 (MR 2221331 | Zbl 1134.30310.) | MR | Zbl
[12] Hankel determinant for starlike and convex functions, Int. J. Math. Anal., (Ruse), Volume 4 (no. 13-16) (2007), pp. 619-625 (MR 2370200 | Zbl 1137.30308.) | MR | Zbl
[13] The Hankel transform and some of its properties, J. Integer Seq., Volume 4 (1) (2001), pp. 1-11 (MR 1848942 | Zbl 0978.15022.) | MR | Zbl
[14] Coefficient bounds for the inverse of a function with derivative in , Proc. Amer. Math. Soc., Volume 87 (1983), pp. 251-257 (MR 0681830 | Zbl 0488.30010.) | MR | Zbl
[15] Uniformly convex functions, Ann. Polon. Math., Volume 57(2) (1992), pp. 165 -175 (MR 1182182.) | MR | Zbl
[16] On the second Hankel determinant of areally mean - Valent functions, Trans. Amer. Math. Soc., Volume 223(2) (1992), pp. 337 -346 (MR 0422607 | Zbl 0346.30012) | MR | Zbl
[17] Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl., Volume 28(8) (1983), pp. 731 -739 (MR 0725316 | Zbl 0524.30008.) | MR | Zbl
[18] On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., Volume 41 (1966), pp. 111-122 (MR 0185105 | Zbl 0138.29801.) | DOI | MR | Zbl
[19] Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975 (MR 0507768 | Zbl 0298.30014.) | MR | Zbl
[20] A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie - Sklodowska Sect. A., Volume 47 (1993), pp. 123 -134 (MR 1344982 | Zbl 0879.30004.) | MR | Zbl
[21] Orthogonal polynomials on the unit circle, Part 1. Classical theory, AMS Colloquium Publ. 54, Part 1, American Mathematical Society, Providence, RI, 2005 (MR 2105088| Zbl 1082.42020) | MR | Zbl
[22] Coefficient inequality for uniformly convex functions of order , J. Adv. Res. Pure Math., Volume 5(1) (2013), pp. 25-41 (MR 3020966.) | DOI | MR
Cité par Sources :