Nous établissons des inégalités en norme pour certains opérateurs classiques dans les amalgames et certains sous-espaces d’espaces de Morrey.
We give norm inequalities for some classical operators in amalgam spaces and in some subspaces of Morrey space.
Keywords: Amalgams spaces, fractional maximal operator, Riesz potential, Hilbert transform
Mot clés : Espace amalgame, operateur maximal fractionnaire, potentiel de Riesz, transformation de Hilbert
@article{AMBP_2014__21_2_21_0, author = {Feuto, Justin}, title = {Norm inequalities in some subspaces of {Morrey} space}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {21--37}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {21}, number = {2}, year = {2014}, doi = {10.5802/ambp.340}, mrnumber = {3322613}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.340/} }
TY - JOUR AU - Feuto, Justin TI - Norm inequalities in some subspaces of Morrey space JO - Annales mathématiques Blaise Pascal PY - 2014 SP - 21 EP - 37 VL - 21 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.340/ DO - 10.5802/ambp.340 LA - en ID - AMBP_2014__21_2_21_0 ER -
Feuto, Justin. Norm inequalities in some subspaces of Morrey space. Annales mathématiques Blaise Pascal, Tome 21 (2014) no. 2, pp. 21-37. doi : 10.5802/ambp.340. http://www.numdam.org/articles/10.5802/ambp.340/
[1] A note on Riesz potentials, Duke Math. J., Volume 42 (1975), p. 765-778. | DOI | MR | Zbl
[2] Nonlinear potential analysis on Morrey spaces and their capacities, Indiana University Mathematics Journal, Volume 53 (2004), p. 1629-1663. | DOI | MR | Zbl
[3] Product-convolution operators and mixed-norm spaces, Trans. AMS, Volume 263 (1981), p. 309-341. | DOI | MR | Zbl
[4] Morrey spaces and Hardy-Littlewood maximal function, Rend. Math., Volume 7 (1987), p. 273-279. | MR | Zbl
[5] Riesz potentials and amalgams, Ann. Inst. Fourier, Grenoble, Volume 49 (1999), pp. 1345-1367 | DOI | Numdam | MR | Zbl
[6] Wiener amalgam spaces on locally compact groups (1989) (Masters Thesis, University of Vienna)
[7] On some subspaces of Morrey-Sobolev spaces and boundedness of Riesz integrals, Ann. Pol. Math., Volume 108 (2013), pp. 133-153 | DOI | MR | Zbl
[8] Regularity in Morrey spaces of strong solutions to nondivergence elliptic equations with VMO coefficients, Georgian Math. J., Volume 5 (1998), p. 425-440. | DOI | MR | Zbl
[9] A characterization of Wiener’s algebra on locally compact groups, Arch. Math. (Basel), Volume 29 (1977), pp. 136-140 | DOI | MR | Zbl
[10] Banach convolution algebras of Wiener’s type, Functions, Series, Operators, Proc. Conf. Budapest, 38, Colloq. Math. Soc. János Bolyai (1980), pp. 509-524 | MR | Zbl
[11] Espaces de fonctions á moyenne fractionnaire intgrables sur les groupes localement compacts, Afr. Mat., Volume 15 (2003), pp. 73-91 | MR | Zbl
[12] Integrable fractional mean functions on spaces of homogeneous type, Afr. Diaspora J. Math., Volume 9 (2010), pp. 8-30 | MR | Zbl
[13] Étude d’une classe d’espaces de fonctions contenant les espaces de Lorentz, Afr. Mat., Volume 1 (1988), pp. 29-50 | MR | Zbl
[14] Amalgams of and , Bull. Amer. Math. Soc, Volume 13 (1985), pp. 1-21 | DOI | MR | Zbl
[15] Weighted norm inequalities and related topics, 116, North-Holland Math. Stud., 1985 | MR | Zbl
[16] Equivalence of norms of Riesz potential and fractional maximal function in Morrey-type spaces, Preprint, Institute of Mathematics, AS CR, Prague. (2008), pp. 7-14 | MR
[17] Modern Fourier analysis, 250, Springer, New York, second edition, 2009 | MR | Zbl
[18] Harmonic analysis on amalgams of and , J. London Math. Soc., Volume 10 (1975), pp. 295-305 | DOI | MR | Zbl
[19] Weighted Norm Inequalities for Fractional Integrals, Trans. of the AMS, Volume 192 (1974), pp. 261-274 | DOI | MR | Zbl
[20] Weakly differentiable functions, Springer-Verlag, 1989 | MR | Zbl
Cité par Sources :