be a sub-fractional Brownian motion with . We establish the existence, the joint continuity and the Hölder regularity of the local time of . We will also give Chung’s form of the law of iterated logarithm for . This results are obtained with the decomposition of the sub-fractional Brownian motion into the sum of fractional Brownian motion plus a stochastic process with absolutely continuous trajectories. This decomposition is given by Ruiz de Chavez and Tudor [10].
Mots clés : Sub-fractional Brownian motion, local time, local nondeterminism, Chung’s type law of iterated logarithm
@article{AMBP_2010__17_2_357_0, author = {Mendy, Ibrahima}, title = {On the local time of sub-fractional {Brownian} motion}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {357--374}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {17}, number = {2}, year = {2010}, doi = {10.5802/ambp.288}, mrnumber = {2778915}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.288/} }
TY - JOUR AU - Mendy, Ibrahima TI - On the local time of sub-fractional Brownian motion JO - Annales mathématiques Blaise Pascal PY - 2010 SP - 357 EP - 374 VL - 17 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.288/ DO - 10.5802/ambp.288 LA - en ID - AMBP_2010__17_2_357_0 ER -
%0 Journal Article %A Mendy, Ibrahima %T On the local time of sub-fractional Brownian motion %J Annales mathématiques Blaise Pascal %D 2010 %P 357-374 %V 17 %N 2 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.288/ %R 10.5802/ambp.288 %G en %F AMBP_2010__17_2_357_0
Mendy, Ibrahima. On the local time of sub-fractional Brownian motion. Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 2, pp. 357-374. doi : 10.5802/ambp.288. http://www.numdam.org/articles/10.5802/ambp.288/
[1] The geometry of random fields, John Wiley & Sons Ltd., Chichester, 1981 (Wiley Series in Probability and Mathematical Statistics) | MR | Zbl
[2] An introduction to continuity, extrema, and related topics for general Gaussian processes, Institute of Mathematical Statistics Lecture Notes—Monograph Series, 12, Institute of Mathematical Statistics, Hayward, CA, 1990 | MR | Zbl
[3] Hölder properties of local times for fractional Brownian motions, Metrika, Volume 69 (2009) no. 2-3, pp. 125-152 | DOI | MR
[4] Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc., Volume 137 (1969), pp. 277-299 | DOI | MR | Zbl
[5] Gaussian processes with stationary increments: Local times and sample function properties, Ann. Math. Statist., Volume 41 (1970), pp. 1260-1272 | DOI | MR | Zbl
[6] Local nondeterminism and local times of Gaussian processes, Indiana University Mathematical Journal, Volume 23 (1973), pp. 69-94 | DOI | MR | Zbl
[7] Gaussian sample functions: Uniform dimension and Hölder conditions nowhere, Nagoya Math. J., Volume 46 (1972), pp. 63-86 | MR | Zbl
[8] Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particule systems, Electron. Comm. Probab., Volume 32 (2007), pp. 161-172 | MR | Zbl
[9] On the local time of the multifractional brownian motion, Stochastics and stochastic repports, Volume 78 (2006), pp. 33-49 | MR | Zbl
[10] A decomposition of sub-fractional Brownian motion, Math. Rep. (Bucur.), Volume 11(61) (2009) no. 1, pp. 67-74 | MR
[11] On moduli of continuity for local times of Gaussian processes, Stochastic Process. Appl., Volume 58 (1995) no. 1, pp. 1-21 | DOI | MR | Zbl
[12] Sample function properties of multi-parameter stable processes, Z. Wahrsch. Verw. Gebiete, Volume 56 (1981), pp. 195-228 | DOI | MR | Zbl
[13] Occupation densities, Annales of probability, Volume 8 (1980), pp. 1-67 | DOI | MR | Zbl
[14] Local time and related sample paths of filtered white noises, Annales Mathematiques Blaise Pascal, Volume 14 (2007), pp. 77-91 | DOI | Numdam | MR | Zbl
[15] Hölder conditions for the local times of certain gaussian processes with stationary increments, Proceeding of the Japan Academy, Volume 53 (1977), pp. 84-87 | DOI | MR | Zbl
[16] Local times and related sample path proprieties of certain selfsimilar processes, J. Math. Kyoto Univ., Volume 33 (1993), pp. 51-64 | MR | Zbl
[17] A decomposition of the bifractional Brownian motion and some applications, Statist. Probab. Lett, Volume 779 (2009), pp. 619-624 | DOI | MR | Zbl
[18] Gaussian processes: inequalities, small ball probabilities and applications, Stochastic processes: theory and methods (Handbook of Statist.), Volume 19, North-Holland, Amsterdam, 2001, pp. 533-597 | MR | Zbl
[19] Small values of Gaussian processes and functional laws of the iterated logarithm, Probab. Th. Rel. Fields, Volume 101 (1995), pp. 173-192 | DOI | MR | Zbl
[20] Local times for gaussian vector fields, Indiana Univ. Math. J., Volume 27 (1978), pp. 204-237 | DOI | MR | Zbl
[21] Some propreties of sub-fractional Brownian motion, Stochastics., Volume 79 (2007), pp. 431-448 | MR | Zbl
[22] Inner product spaces of integrands associated to sub-fractional Brownian motion, Statist. Probab. Lett., Volume 78 (2008), p. 2201-2209. | DOI | MR
[23] Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields, Probab. Th. Rel. fields, Volume 109 (1997), pp. 129-157 | DOI | MR | Zbl
Cité par Sources :