Integrable functions for the Bernoulli measures of rank 1
Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 2, pp. 341-356.

In this paper, following the p-adic integration theory worked out by A. F. Monna and T. A. Springer [4, 5] and generalized by A. C. M. van Rooij and W. H. Schikhof [6, 7] for the spaces which are not σ-compacts, we study the class of integrable p-adic functions with respect to Bernoulli measures of rank 1. Among these measures, we characterize those which are invertible and we give their inverse in the form of series.

DOI : 10.5802/ambp.287
Classification : 46S10
Mots clés : integrable functions, Bernoulli measures of rank $1$, invertible measures
Maïga, Hamadoun 1

1 Département de Mathématiques et d’Informatique Faculté des Sciences et Techniques Université de Bamako Bamako Mali
@article{AMBP_2010__17_2_341_0,
     author = {Ma{\"\i}ga, Hamadoun},
     title = {Integrable functions for the {Bernoulli} measures of rank $1$},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {341--356},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {17},
     number = {2},
     year = {2010},
     doi = {10.5802/ambp.287},
     zbl = {1207.26031},
     mrnumber = {2778916},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.287/}
}
TY  - JOUR
AU  - Maïga, Hamadoun
TI  - Integrable functions for the Bernoulli measures of rank $1$
JO  - Annales mathématiques Blaise Pascal
PY  - 2010
SP  - 341
EP  - 356
VL  - 17
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.287/
DO  - 10.5802/ambp.287
LA  - en
ID  - AMBP_2010__17_2_341_0
ER  - 
%0 Journal Article
%A Maïga, Hamadoun
%T Integrable functions for the Bernoulli measures of rank $1$
%J Annales mathématiques Blaise Pascal
%D 2010
%P 341-356
%V 17
%N 2
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.287/
%R 10.5802/ambp.287
%G en
%F AMBP_2010__17_2_341_0
Maïga, Hamadoun. Integrable functions for the Bernoulli measures of rank $1$. Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 2, pp. 341-356. doi : 10.5802/ambp.287. http://www.numdam.org/articles/10.5802/ambp.287/

[1] Diarra, Bertin Base de Mahler et autres, Séminaire d’Analyse, 1994–1995 (Aubière) (Sémin. Anal. Univ. Blaise Pascal (Clermont II)), Volume 10, Univ. Blaise Pascal (Clermont II), Clermont-Ferrand, 1997, pp. Exp. No. 16, 18 | MR | Zbl

[2] Diarra, Bertin Cours d’analyse p-adique (1999 - 2000) (Technical report http://math.univ-bpclermont.fr/ diarra)

[3] Koblitz, Neal p-adic Numbers, p-adic Analysis and Zeta-Functions, Springer-Verlag, New York - Heidelberg - Berlin, 1977 | MR | Zbl

[4] Monna, A. F.; Springer, T. A. Intégration non-archimédienne. I, Nederl. Akad. Wetensch. Proc. Ser. A 66=Indag. Math., Volume 25 (1963), pp. 634-642 | MR | Zbl

[5] Monna, A. F.; Springer, T. A. Intégration non-archimédienne. II, Nederl. Akad. Wetensch. Proc. Ser. A 66=Indag. Math., Volume 25 (1963), pp. 643-653 | MR | Zbl

[6] van Rooij, Arnoud C. M. Non-Archimedean Functional Analysis, M. Dekker, New York and Basel, 1978 | MR | Zbl

[7] Schikhof, Wilhelmus H. Ultrametric calculus - An introduction to p-adic analysis, Cambridge University Press, Cambridge, 1984 | MR | Zbl

Cité par Sources :