Necessary and sufficient conditions are given so that the space of all continuous functions from a zero-dimensional topological space to a non-Archimedean locally convex space , equipped with the topology of uniform convergence on the compact subsets of , to be polarly absolutely quasi-barrelled, polarly -barrelled, polarly -barrelled or polarly -barrelled. Also, tensor products of spaces of continuous functions as well as tensor products of certain -valued measures are investigated.
Mots clés : Non-Archimedean fields, zero-dimensional spaces, locally convex spaces
@article{AMBP_2008__15_2_169_0, author = {Katsaras, Athanasios}, title = {P-adic {Spaces} of {Continuous} {Functions} {II}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {169--188}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {15}, number = {2}, year = {2008}, doi = {10.5802/ambp.246}, zbl = {1166.46042}, mrnumber = {2468042}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.246/} }
TY - JOUR AU - Katsaras, Athanasios TI - P-adic Spaces of Continuous Functions II JO - Annales mathématiques Blaise Pascal PY - 2008 SP - 169 EP - 188 VL - 15 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.246/ DO - 10.5802/ambp.246 LA - en ID - AMBP_2008__15_2_169_0 ER -
Katsaras, Athanasios. P-adic Spaces of Continuous Functions II. Annales mathématiques Blaise Pascal, Tome 15 (2008) no. 2, pp. 169-188. doi : 10.5802/ambp.246. http://www.numdam.org/articles/10.5802/ambp.246/
[1] On the dual space for the strict topology and the space in function space, Ultrametric functional analysis (Contemp. Math.), Volume 384, Amer. Math. Soc., Providence, RI, 2005, pp. 15-37 | MR | Zbl
[2] On the strict topology in non-Archimedean spaces of continuous functions, Glas. Mat. Ser. III, Volume 35(55) (2000) no. 2, pp. 283-305 | MR | Zbl
[3] P-adic Spaces of continuous functions I, Ann. Math. Blaise Pascal, Volume 15 (2008) no. 1, pp. 109-133 | DOI | Numdam | MR
[4] Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian Math. J., Volume 6 (1999) no. 1, pp. 33-44 | DOI | MR | Zbl
[5] Non-Archimedean functional analysis, Monographs and Textbooks in Pure and Applied Math., 51, Marcel Dekker Inc., New York, 1978 | MR | Zbl
Cité par Sources :