On étudie une équation aux dérivées partielles stochastiques fractionnaires d’ordre dirigée par une mesure de Poisson compensée. On montre l’existence et l’unicité de la solution et on étudie la régularité de ses trajectoires.
We study a stochastic fractional partial differential equations of order driven by a compensated Poisson measure. We prove existence and uniqueness of the solution and we study the regularity of its trajectories.
Keywords: Stochastic partial differential equations, fractional derivative operator, Poisson measure.
Mot clés : EDPS, Dérivation fractionnaire, mesure de Poisson
@article{AMBP_2008__15_1_43_0, author = {Hajji, Salah}, title = {Stochastic fractional partial differential equations driven by {Poisson} white noise}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {43--55}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {15}, number = {1}, year = {2008}, doi = {10.5802/ambp.238}, zbl = {1154.26008}, mrnumber = {2418012}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.238/} }
TY - JOUR AU - Hajji, Salah TI - Stochastic fractional partial differential equations driven by Poisson white noise JO - Annales mathématiques Blaise Pascal PY - 2008 SP - 43 EP - 55 VL - 15 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.238/ DO - 10.5802/ambp.238 LA - en ID - AMBP_2008__15_1_43_0 ER -
%0 Journal Article %A Hajji, Salah %T Stochastic fractional partial differential equations driven by Poisson white noise %J Annales mathématiques Blaise Pascal %D 2008 %P 43-55 %V 15 %N 1 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.238/ %R 10.5802/ambp.238 %G en %F AMBP_2008__15_1_43_0
Hajji, Salah. Stochastic fractional partial differential equations driven by Poisson white noise. Annales mathématiques Blaise Pascal, Tome 15 (2008) no. 1, pp. 43-55. doi : 10.5802/ambp.238. http://www.numdam.org/articles/10.5802/ambp.238/
[1] Parabolic SPDEs driven by Poisson White Noise, Stochastic Processes and Their Applications, Volume 74 (1998), pp. 21-36 | DOI | MR | Zbl
[2] Etude d’une EDPS conduite par un bruit Poissonnien, Probability Theory and related fields, Volume 111 (1998), pp. 287-321 | DOI | Zbl
[3] Some non-linear s.p.d.e.’s that are second order in time, Electron. J. Probab., Volume 8 (2003), pp. 1-21 | Zbl
[4] On some properties of a High Order fractional differential operator which is not in general selfadjoint, Applied Mathematical Sciences, Volume 1,27 (2007), pp. 1325-1339 | MR
[5] On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension, Stoc. Proc. Appl., Volume 115 (2005), pp. 1764-1781 | DOI | MR | Zbl
[6] Malliavin calculus for parabolic SPDEs with jumps, Stochastic Processes and Their Applications, Volume 87 (2000), pp. 115-147 | DOI | MR | Zbl
[7] Stochastic differential equations and diffusion processes, North-Holland Publishing Company. Mathematical Library 24., Holland, 1989 | MR | Zbl
[8] Fractional Differential equations: an Introduction to Fractional Derivatives, Fractional Differential equations, to Methods of Their Solution and Some of their Applications, Academic Press, San Diego, CA., 1999 | MR | Zbl
[9] An Introduction to stochastic partial differential equations, Lecture Notes in Mathematics 1180, Springer Berlin / Heidelberg, 1986, pp. 266-437 | MR | Zbl
[10] Symmetric solutions of semilinear stochastic equations, Lecture Notes in Mathematics 1390, Springer Berlin / Heidelberg, 1988, pp. 237-256 | MR | Zbl
Cité par Sources :