A classical model for three-phase capillary immiscible flows in a porous medium is considered. Capillarity pressure functions are found, with a corresponding diffusion-capillarity tensor being triangular. The model is reduced to a degenerate quasilinear parabolic system. A global existence theorem is proved under some hypotheses on the model data.
@article{AMBP_2007__14_2_243_0, author = {Shelukhin, Vladimir}, title = {A degenerate parabolic system for three-phase flows in porous media}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {243--254}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {14}, number = {2}, year = {2007}, doi = {10.5802/ambp.234}, zbl = {1156.35393}, mrnumber = {2369873}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.234/} }
TY - JOUR AU - Shelukhin, Vladimir TI - A degenerate parabolic system for three-phase flows in porous media JO - Annales mathématiques Blaise Pascal PY - 2007 SP - 243 EP - 254 VL - 14 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.234/ DO - 10.5802/ambp.234 LA - en ID - AMBP_2007__14_2_243_0 ER -
%0 Journal Article %A Shelukhin, Vladimir %T A degenerate parabolic system for three-phase flows in porous media %J Annales mathématiques Blaise Pascal %D 2007 %P 243-254 %V 14 %N 2 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.234/ %R 10.5802/ambp.234 %G en %F AMBP_2007__14_2_243_0
Shelukhin, Vladimir. A degenerate parabolic system for three-phase flows in porous media. Annales mathématiques Blaise Pascal, Tome 14 (2007) no. 2, pp. 243-254. doi : 10.5802/ambp.234. http://www.numdam.org/articles/10.5802/ambp.234/
[1] Multiphase flows in porous media: Mechanics, mathematics and numerics, Springer-Verlag, New York, 1988 (Lecture Notes in Engineering no. 34) | MR | Zbl
[2] Dynamic theory of quasi-linear parabolic systems III. Global existence, Math. Z., Volume 202 (1989), pp. 219-250 | DOI | MR | Zbl
[3] Comparison of various formulations of three-phase flow in porous media, Journal of Computational Physics, Volume 132 (1997), pp. 362-373 | DOI | MR | Zbl
[4] A quasilinear parabolic system for three-phase capillary flow in porous media, SIAM J. Math. Anal., Volume 35 no. 4 (2003), pp. 1029-1041 | DOI | MR | Zbl
[5] Initial boundary value problems for a quasilinear parabolic system in three-phase capillary flow in porous media, SIAM J. Math. Anal., Volume 36 no. 5 (2005), pp. 1407-1425 | DOI | MR | Zbl
[6] Theormodynamic basis of capillary pressure in porous media, Water Resources Research, Volume 29 (1993), pp. 3389-3405 (no. 10) | DOI
[7] Linear and quasi-linear equations of parabolic type, AMS, Rhode Island: Providence, 1968 | Zbl
[8] Group Analysis of Differential Equations, Academic Press, New York, London, 1982 | MR | Zbl
[9] Fundamentals of Numerical Reservoir Simulation, Elsevier Scientific Publishing Company, Amsterdam Oxford New York, 1977
[10] Probability model for estimating three-phase relative permeability, J. of Petroleum Technology, Volume 22 (1970), pp. 214-218
[11] Three-phase filtration of immiscible fluids, Itogi Nauki i Tekhniki, Seriya Kompleksnie i spetsial’nie Razdely Mekhaniki no. 4 (in Russian), VINITI, 1991, pp. 98-154
Cité par Sources :